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Abstract

This study describes an approach towards the detec-
tion of carbon nanotubes in scanning electron micro-
scopic images. It is designed to work in a real-time
environment for automated nanofabrication. Main dif-
ficulties are the high level of image noise and the occur-
rence of debris objects. A descriptor derived from the
principle component analysis of the geometrical object
distribution is found to be a very helpful indicator for
object classification. It turns out to be largely invariant
to alterations in imaging conditions. All methods de-
scribed have been implemented and evaluated in large-
scale experiments. The procedure has also been fully
integrated into a distributed control architecture.

1 Introduction

Carbon nanotubes (CNTs) are one of the most
promising materials in nanotechnologic applications.
Their most interesting nanoelectric properties are the
ballistic (scattering-free) and spin-conserving transport
of electrons and their ability to show metallic as well
as semiconductive behavior. Also, CNTs can handle a
current density 1000 times higher than copper. This
makes CNTs the perfect candidate for novel intercon-
nects in the fabrication of integrated circuits [5]. Fur-
thermore, nanoelectronic components such as the CNT
field effect transistor have been built and show supe-
rior characteristics compared to silicon-based transis-
tors [2][1]. Besides their nanoelectric properties, CNTs
are also an auspicious material in nanomechanic appli-
cations.

Before these properties can be exploited in the
large-scale production of nanodevices, reliable meth-
ods for automated handling and assembly of CNTs
are needed. These differ significantly from the tech-
niques used in conventional robotics because the be-
havior of nanoscale objects such as CNTs is consider-
ably less predictable than that of macroscale objects.
Visual feedback from scanning electron microscope im-
ages turned out to be the most important type of sen-
sor feedback for this task. We present a CNT detec-
tion method than can be used for initial localization of
CNTs from SEM images.

Section 2 will provide an overview of the current
state of the art in automated CNT handling and also
analyze the problem of visual CNT detection. The
CNT detection method based on principle component
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analysis is described in section 3 and evaluated in mul-
tiple experiments in section 4.

2 Problem Analysis

Today, CNTs are commercially available and three
different production methods are well-established: arc
discharge, laser ablation and chemical vapor deposi-
tion (CVD). We focus on multi-walled CNTs grown by
plasma enhanced CVD with a typical length of 10 -
20 �m and diameter of 150 - 350 nm but the results
can be easily translated to other types of CNTs.

Electrothermal microgrippers have shown to be a
useful tool for mechanical handling of individual CNTs.
Latest approaches demonstrated pick-and-place han-
dling of single CNTs following different goals includ-
ing their electrical and mechanical characterization and
the assembly of sensoric devices [7]. The utilization of
visual feedback for the automation of CNT handling
procedures focused on object tracking so far. Recent
approaches include dedicated implementations of the
active contours algorithm and 3D fitting of CAD mod-
els [3][9]. Nevertheless, these methods require manual
initialization of object locations.

The main portion of noise in SEM images is caused
by the secondary electron detector and is usually re-
duced using temporal averaging. This is why real-time
processing of SEM images is always a tradeoff between
image acquisition time and image quality. Figure 1
depicts this relationship showing multiple SEM im-
ages of an isolated CNT grown by CVD onto a silicon
wafer. An acceptable acquisition time for full-frame
CNT search is <1s. Another source of image degrada-
tion is grey level fluctuation which arises due to elec-
trostatic charge and due to changes in the alignment
of target, electron beam and detector.

Figure 1: Sequence of SEM images of a multi-walled
CNT with increasing level of magnification from 800x
(top) up to 4000x (bottom) with a full-frame image
acquisition time of 90ms/640ms/40.3s (left to right).
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Figure 2: CNT rising out of the focus plane (a), ma-
terial attached to CNT (b), conical shaped CNT (c),
debris (d-f)

In the following, we describe the requirements to a
CNT detection algorithm for the search of CNTs that
are located at the surface of a silicon wafer. The algo-
rithm must be fast enough for automation procedures
and therefore handle a high level of image noise. It
must detect CNTs at a wide range of different magni-
fications, different lengths and in any orientation. De-
pending on the fabrication process, multi-walled CNTs
may be conically shaped. Evaporation of the elec-
trothermal gripper may also lead to the deposition of
material on the CNT surface. Although the SEM is
considered to be an image sensor with high depth of
field, a CNT may partly rise out of the focus plane.
The algorithm must provide orientation and endpoints
of CNTs and finally reliably reject any non-CNT parti-
cles that cannot be avoided if working under low clean-
room standards. Some of these requirements are illus-
trated in figure 2.

Combined with a scanning procedure, this algorithm
will be able to provide a complete map of the wafer
surface including CNTs and non-CNT objects. This
information is intended to be used for the initialization
of tracking algorithms that are needed for automated
CNT handling. Additionally, it may be used as an
error recovery sequence.

Because of its robustness to noise, normalized cross-
correlation (NCC) is frequently used in SEM vision ap-
plications. High correlation coefficients between a sam-
ple pattern and the image to be analyzed indicate a hit
of the object in demand. It has to be noted that NCC is
very sensitive to object size, image scale, rotation and
variations in object shape. Therefore, it does not meet
the requirements stated above and is not appropriate
to the problem.

3 Proposed Method

In the previous section we discussed that depending
on the imaging conditions, CNT fabrication process
and manipulation history only few assumption can be
made regarding the appearance of CNTs in SEM im-
ages. One assumption that holds in practically every
case is the idea that the outline of a CNT can be ap-
proximated by a straight line. Since other objects or
structures found on the substrate tend to arrange and
shape in a chaotic or round way this property will be
exploited for CNT detection. Three commonly used
methods for straight line detection were considered.

The active contour algorithm can be reformulated
for straight line detection [6]. It uses an inner contour
energy depending on line straightness and an outer con-
tour energy derived from the image gradient perpendic-
ular to the contour. This method is not suitable for our
problem since the image gradient is highly sensitive to
noise and because thick lines result in double hits.

Another algorithm for straight line detection is the
Hough transform. Each point in Hough space corre-
sponds to a line object in the input image, defined by
angle and offset. Peaks in Hough space are used to
identify dominant line objects. A disadvantage of the
Hough transform is its high computational cost.

The principle component analysis (PCA) is a tool
well-known in multivariate statistics. In the context
of pattern recognition it is mainly used for dimension
reduction of the input feature space. However, applied
to the geometrical distribution of an object, it may
also be utilized for straight line detection [4]. An ideal
straight line in two-dimensional space has a principle
component that can be calculated from the eigenvec-
tors and eigenvalues of its scatter matrix. The scatter
matrix S is an estimate of the covariance matrix that
is derived from the geometrical distribution of n line
points X = [x1,x2, . . . ,xn]:

S =
n∑

i=1

(xi − x) (xi − x)′ where x =
1
n

n∑
j=1

xj .

Since S is positive semidefinite, we can compute two
non negative eigenvalues λ1,2 and corresponding eigen-
vectors v1,2. The absolute values of λ1,2 depend on
scale and line length. A normalized score indicating
line straightness is obtained from

PCE =
2 · λ1

λ1 + λ2
− 1 .

We will now explain how PCA can be applied to achieve
robust CNT detection.

Noise Reduction SEM image noise is assumed to
be Poisson-distributed due to the small number of sec-
ondary electrons measured by the detector. The me-
dian filter is expected to provide good results in this
case because it is capable of edge preservation and shot
noise removal. In our application, median filtering is
critical because it removes thin lines from the image,
e.g. CNTs that we are looking for. Therefore, we use
simple Gaussian low-pass filtering in addition to tem-
poral averaging. Gaussian filtering also removes high-
frequency image detail which is irrelevant to our prob-
lem.

Image Segmentation It has to be noted that the
CNT detection presented here does not rely on a per-
fect object segmentation from the background. Lo-
cally adaptive thresholding techniques turned out to
be sensitive to slight variations in substrate bright-
ness. Consequently we choose a global thresholding
strategy. By experiment, we compare three meth-
ods which derive a threshold value from the image
grey level histogram [8]: Gaussian mixture modeling
(GMM), within-class variance minimization and class-
entropy maximization. All methods successfully sep-
arate CNT and debris objects from the substrate at

371



a wide range of brightness. However, in image scenes
showing only the substrate, the GMM and variance-
based approaches fail to grade the whole image as back-
ground. For this reason we select class-entropy maxi-
mization for image segmentation.

Object Retrieval Individual objects are identified
in the binary segmented image as 8-connected pixel-
clouds. Object holes are filled afterwards. As this
problem has a unique solution and is solved by any
naive approach in acceptable time the actual imple-
mentation is irrelevant. We used an exterior contour
retrieval algorithm with additional region filling. For
m objects we receive m object point sets X1 . . .Xm.

Principle Component Analysis PCA is applied to
every point set X1 . . .Xm individually and we obtain
the principle component energy scores PC1

E . . .PCm
E . A

score of PCE = 1 corresponds to an ideal straight line
whereas if the score is PCE = 0 no dominant direction
is found. This would be the case if the object is a
circular disc. Single point objects are excluded because
the corresponding scatter matrix S is singular. The
eigenvectors v1,2 of each object form a rotation matrix
which is used to transform each set of object points
X1 . . .Xm into the its own PCA space. We receive
X̂1 . . . X̂m.

Endpoint Retrieval From each set of transformed
object points X̂ = [x̂1, x̂2, . . . , x̂n] we calculate two
peak positions

p̂1 =
[

min
i∈ 1...n

{
x̂i ·

(
1
0

)}
, 0

]T

p̂2 =
[

max
i∈ 1...n

{
x̂i ·

(
1
0

)}
, 0

]T

.

Transforming p̂1,2 back to image coordinates, we ob-
tain an estimate of the CNT endpoints p1,2. Figure 3
depicts the working principle of PCA applied to the
geometrical distribution of a CNT image.

Object Classification The principle component en-
ergy based score PCE is a meaningful indicator for
CNT objects. However, if an object is formed by only
a few points the result becomes arbitrary. For this rea-
son we need to check the object size for plausibility. We
define a rough measure of object size using the relative
projection area n, an appropriate scaling factor kPA

and magnification scale M : PA = kPA
· √n/M . The

decision boundary is learned automatically by training
a Support Vector Machine (SVM) classifier [10] based
on PCE and PA.

4 Experimental Results

The algorithm has been implemented to prove its
capabilities in real-world experiments. Main studies
have been carried out using a LEO 1450 by Zeiss. For
comparison additional tests have been made using a
Quanta 600 by FEI. Both SEMs are equipped with
additional image acquisition hardware by Point Elec-
tronic. The silicon wafer is movable by piezoelectric
actuators.

Figure 3: Masked CNT image after segmentation (up-
per), detected principal and secondary component of
CNT’s geometrical distribution (lower). The two ar-
rows point at p1,2.

Initially, we investigated the influence of imaging
conditions on the outcome of the segmentation method.
Both SEMs come with an automated brightness and
contrast adjustment which aims at best usage of the
dynamic range. We studied the effect of variations
in brightness and found the segmentation procedure
largely insensitive as long as the object contrast re-
mains sufficient.

In section 2, we outlined the importance of feature
invariance to rotation, scaling and translation. These
properties have been evaluated using a representative
CNT object. For this purpose a sequence of 60 images
was taken. The orientation was changed using electron
beam rotation. Magnification was varied from 800x to
4000x. As expected, the features are almost invariant
to translation and scale within the limits of numer-
ical calculations and noise (σ2 (PCE) = 4.79 · 10−8,
σ2 (PA) = 6.12 · 10−4). Changing the object orien-
tation relative to the scanning direction effects con-
trast and shadows introducing a higher level of vari-
ation which is still uncritical for object classification
(σ2 (PCE) = 5.61 · 10−7, σ2 (PA) = 6.70 · 10−3).

A collection of 300 image scenes was used to gener-
ate statistics of possible object shapes. Some of them
can be seen from figures 5 and 6. 1177 objects were
identified manually which included 432 CNTs. Small
parts broken from CNTs were marked as debris as they
are useless for our purposes. Figure 4 shows the his-
togram of PCE for CNT and debris objects. All CNTs
obtain high values of PCE. Conical shaped CNTs and
those with material attached to them were already in-
cluded here. Small debris objects come in arbitrary
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Figure 4: Statistics of principle component energy
score PCE for debris and CNT objects. Values of CNT
objects cluster close to PCE = 1 while debris objects
fill the whole range.
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Figure 5: Image scene assessed by the proposed algo-
rithm. Principle component directions are indicated.
The two CNTs obtain a PCE of 0.9988 and 0.9987 -
the debris object 0.1457 respectively.

Figure 6: Selection of image scenes collected during
the experiments at magnifications ranging from 800x to
4000x. A total number of 1177 objects were identified
in the complete set and used for training: 432 CNTs
and 745 debris objects.

shape which occasionally results in high values of PCE.
Instead of manually choosing thresholds for PCE and
PA, we train a linear SVM on our statistics.

The algorithm has been fully integrated into a pre-
existing distributed control architecture for automated
nanohandling of CNTs. It sends commands to and re-
cieves results from the computer vision application via
a CORBA interface. All actuators as well as the SEM
control are available via the common interface. This al-
lows us to test the detection algorithm in its dedicated
application environment without any manual interac-
tion. An automation script was written which scans
the wafer surface through the SEMs field of view. The
vision application detects and classifies objects from
the images. Only if CNTs are detected, the object
endpoint coordinates are transmitted to the controller.
The controller uses its knowledge of the wafer posi-
tion to translate the image coordinates to world coor-
dinates.

For testing, the wafer used in training was ex-
changed in order to provide a new set of objects. The
scan was performed along multiple straight lines which
are 500 �m in length. Throughout multiple test se-
quences no CNT was detected incorrectly (false posi-

tive). However a few CNTs were ignored which were
attached to or occluded by large debris objects. Also,
the algorithm is not able to separate CNTs crossing
each other (figure 6, lower right scene). This is not
contrary to the aim of this work which is the detection
of isolated CNTs on the substrate that can be revisited
for automated nanohandling.

The accuracy of the CNT endpoint coordinates
could not be evaluated due to the lack of a measure-
ment method for comparison. By manually inspecting
the collected data we find most endpoints placed cor-
rectly. Some misplacements occur if the CNT tip is
out of focus. In that case the detected tip position is
shifted towards the CNT center.

This algorithm shows a data-dependent processing
time which was below the image acquisition time for
all real-world experiments. It has to be noted that the
magnifications mentioned in this document are cali-
brated for a 17” display with a resolution of 1280 x
1024 pixel.

5 Conclusion

The proposed method provides a powerful means of
CNT detection using the SEM. Combined with an ob-
ject tracking procedure it enables automated handling
of individual CNTs with a wide range of possible appli-
cations. Reliability and real-time capability have been
proven in large-scale experiments under a wide range
of imaging conditions. The results are also applicable
to other types of CNTs including single-walled CNTs.
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