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Abstract

In the image parameter estimation by the linear re-
gression, it has very high degrees of freedom for the de-
cision of regression coefficients, because the dimension
of image vector is huge high. In this paper, we dis-
cuss its potential by the learning of the dense samples.
For the learning process, we employed a sequential re-
gression coefficient calculation algorithm and realize its
calculation for dense samples with reasonable computa-
tional cost. Through the experimental result, we discuss
about the limitation of parameter estimation ability by
the linear regression.

1 Introduction

The appearance based pose estimation method rep-
resented by the parametric eigen space method [1, 2]
does not need any feature extraction for parameter es-
timation, and the method is widely applied by many
applications for its convenience [3, 4, 5]. The paramet-
ric eigen space method estimates object’s pose by the
nearest neighbor search between parametric manifold
and projection point of an input sample on the eigen
space. However, we can implement by the simple linear
regression instead of such parameter estimation [7].

The regression based method is not limited in the
linear regression, non linear regression based on kernel-
CCA [8], kernel-SVM [9] are proposed. These kernel
based methods are powerful and flexible since they
find an optimal curved subspace. However, the im-
age vector has vast degrees of freedom for decision of
the regression coefficients even if we use linear regres-
sion, since the explanatory variables are corresponding
to image pixels(Figure 1). The N dimensional im-
age vector space is capable the loss less regression for
N − 1 learning samples. We can not decide the op-
timal regression coefficients without its criterion from
the sparse samples, but if we have dense learning sam-
ples, the optimal regression coefficients must be fixed.
The dense sample learning gives continuous movement
of the image vector for each parameters and if we can
regard its movement as linear relation at the all lo-
cal regions by the parameters, its coefficients give a
perfect regression for the parameter estimation by the
linear regression. It means the degree-of-freedom of
the manifold in the image vector space not exceeds the
dimension of the image vector.

In this paper, we employ a sequential update scheme
of regression coefficients for the dense learning samples
and discuss about the limit of the parameter estimation
ability by the linear regressions with the experimental
results.
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Figure 1: Capability of the N dimensional vector space

2 Sequential Update Scheme

Nowadays, most of PC has several hundred GB ex-
ternal memory (HDD) and a few GB main storage
(RAM), even if it is low price PC. Thus, to store dense
sample by the external memory is easy, but to calculate
coefficients of linear regressions for parameter estima-
tion is still hard. When dealing with linear regression
problems, we can calculate regression coefficients Ω for
sample images {xi|i = 1, 2, . . . , n}, xi ∈ RN and image
parameter {pi|i = 1, 2, . . . , n}, pi ∈ R such as

pi = ΩT xi (1)

by the Moore-Penrose matrix inverse

Ω = X(XT X)−1P, (2)

where X = [x1, x2, . . . , xn], P = [p1, p2, . . . , pn], n is
the number of samples and N is equivalent to the num-
ber of pixels. In most case of regression problem of the
image parameter estimation, n � N and the calcula-
tion of eq.(2) is easy if n is less than a few hundred.
However, if we had a full number of samples that means
n = N for the dense samples of regression, we need
over a few GB main memory for the calculation of co-
efficient for the 128× 128 gray scale image. More over,
the calculation cost of matrix inverse is not reasonable.
Therefore, we employ the regression coefficient calcu-
lation method by the sequential update.

The first, we determine an initial coefficient Ω1 that
satisfies eq.(1) for a sample x1 that has parameter p1

by
Ω1 = k1u1 (3)
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u1 =
1

|x1|x1 (4)

where k1 = p1/|x1|. Next, we calculate the orthogonal
component of x2

u2 =
1

|u′
2|

u′
2 (5)

u′
2 = x2 − (uT

1 x2)u1 (6)

that is orthogonal to u1 and we determine the coef-
ficient Ω2 for the samples x1 and x2 by the k2 that
satisfies

p2 = (Ω1 + k2u2)T x2 = ΩT
2 x2 (7)

According to this scheme, ith normal vector ui is cal-
culated by Gram-Schmidt orthogonalization of xi with
{xj |j = 1, 2, . . . , i − 1} such as

ui =
1
|u′

i|
u′

i (8)

u′
i = xi −

i−1∑

j=1

(uT
j xi)uj (9)

and we get the ith regression coefficient by

Ωi = Ωi−1 +
1

uT
i xi

(pi − ΩT
i−1xi)ui. (10)

In the implementation of this calculation scheme, we
do not have to keep all samples to up date Ωi. Thus,
if we use sequentially reading procedure of u1 from ex-
ternal memory, the calculation for the full sample of
coefficient is possible by reasonable cost. For example,
we can calculate the full sample regression coefficient
of double precision arithmetic for 128×128 pixels gray
scale images by a few hundred KB main storage and
2.1GB external memory.

3 Experiment

3.1 Object Recognition with Pose Estima-
tion by the Linear Regression

In this section, we apply the sequential update
scheme to the object recognition and 1-DOF pose esti-
mation problem. For test samples, we use COIL-20 [6]
that is including 72 images for 20 objects at varying
pose to corresponding pose parameters of yaw angle.
Thus, the total number of this library is 1440 and each
image is 128×128 pixels gray scale. In this experiment,
we put the regression coefficients Ωobj ,Ωc and Ωs that
satisfy

obj = Ωobj
T x (11)

cos(θ) = Ωc
T x (12)

sin(θ) = Ωs
T x (13)

for the object number obj and its pose angle θ esti-
mation. We use extended posture expression on unit
circle, because θ is the cyclical parameter. For the ob-
ject recognition, we assign obj = {1, 2, . . . , 20} for each
object and recognize the object number by the round-
ing of estimated obj.

The regression coefficients at each update step are
shown in figure 2. For the update process, we chose the
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Figure 2: Regression Coefficients
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(a) Object Recognition Results.
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(b) Pose Estimation Results.

Figure 3: Parameter Estimation Results.

ith learning sample xi by the random sampling from
1440 samples without duplicated sample. The param-
eter estimation results by these coefficients are shown
in figure 3. The vertical axes show the recognition rate
and pose-estimation error by the RMSE at each ob-
ject. The horizontal axes are the number of learning
samples for the coefficient calculation that is meaning
the coefficients of each update steps. The evaluation
is done by all samples. Thus, the result at 1440 is
meaning the evaluation by the closed samples. From
these results, we can see the recognition error and pose
estimation error are reducing along with increasing of
the number of learning samples. In the evaluation with
the average by all objects, the recognition rate and pose
estimation error were 68.6% and 30.4[deg.] by the coef-
ficients calculated by 800 samples, and were 100% and
1.18 × 10−4[deg.] (it is rounding error) by all samples.
Therefore, this simple linear regression has capacity to
estimate the parameters without error for 1440 samples
of parameter estimation problem since dim(xi) = 1282

is very huge compared to 1440. The computational
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Figure 4: Example images of 4 Objects.

time for regression coefficients was 161 sec. by the
linux based PC (CPU:2.67GHz, RAM:2GB).

3.2 2-DOF Pose Estimation

In the object recognition and 1-DOF pose estima-
tion, its estimation was easy even if we used lin-
ear regression since the samples are not dense com-
pared to the dimension of image vector. In this sec-
tion, we apply linear regression to the dense sam-
ples that have a 2-DOF parameter of posture an-
gles. For the 2-DOF rotation sample, we put the
roll angle ψ for the 2nd parameter in addition to
yaw angle θ and generate the variation for ψ by
the in-plane rotation of image plane. We set the
step parameter as {(θ, ψ)|θ = 0, 5, . . . , 355[deg.], ψ =
0,Δψ, . . . , 255Δψ, Δψ = 360/255[deg.]} and we calcu-
late the linear regression coefficients for the four objects
shown in figure 4 such as

cos(θ) = Ωθ
c

T
x (14)

sin(θ) = Ωθ
s

T
x (15)

cos(ψ) = Ωψ
c

T
x (16)

sin(ψ) = Ωψ
s

T
x (17)

with the sequential update scheme. Thus, the total
number of learning samples is 18360 for each object
and that is greater than dim(xi) = 16384. The fig-
ure 5 shows the coefficients for the object 4 at the up-
date step of 1000, 4000, 10000, 14800. In this exper-
iment, the update was done by xi that sampled from
18360 learning samples by random sampling without
duplication at each object. The 2-DOF pose estima-
tion results for each object are shown in the figure 6.
The vertical axis is a pose estimation error of RMSE
that evaluated by 18360 samples for each object, and
the horizontal axis is the number of samples for coeffi-
cients calculations. From the figure 6, we can see the
error is reducing along with increasing of samples for
coefficient calculation as the general trend of pose es-
timation error. However, the estimation error is rising
and rapidly increasing at the last part. In case of ob-
ject 4, estimation error is increasing around over 12000
samples gently and diverging at the 14800 samples. We
think this reason is related to the failure of the calcu-
lation of regression coefficients. It is confirmed since
these coefficients at the 14800 steps are flattened. The
further detail of this mechanism is discussed at the next
section. The computational time of the regression co-
efficients for the object 4 was 4 hour 51 min. by the
linux based PC (CPU:2.67GHz, RAM:2GB).
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Figure 5: Regression Coefficients (obj4).
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Figure 6: 2-DOF Pose Estimation Error.

4 Discussion

4.1 Condition of Error-free Estimation

Eventually, any linear parameter estimation method
requires linear relation between the distribution of the
samples on the parameter space and image vector
space. In other words, any unsupervised sample (y, q)
has to comply to

q = ΩT y (18)

where Ω is regression coefficients calculated by learn-
ing samples {xi|i = 1, 2, . . . , n} ∈ RN . It means the
vector (yT , q)T that is supervised sample has to lieing
on the hyper plane that is spanned by learning sam-
ples {(xT

i , pi)T |i = 1, 2, . . . , n} in the RN+1. If the
sample has this property, we can see the convergence
of the coefficient Ωi at the update step k ≤ n + 1 and
the samples satisfy Rank({(xT

i , pi)T |i = 1, 2, . . .}) = k.
However, the calculation of linear regression fails in
case of Rank({xi|i = 1, 2, . . .}) < k. Thus, we get the
condition of the image parameter estimation without
estimation error of the linear estimation as

Rank({(xi, pi)}) = Rank({xi}) ≤ n ≤ N ′. (19)

Where N ′ is the number of valid pixels that expressed
following section. From the figure 3, we can see the
estimation error is remaining at the pose estimation
with the coefficients calculated by the samples less than
1440. Therefor, the coefficient is still not converging,
but the dimension of xi is more than 10 times higher
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Table 1: Valid Pixels.
object1 object2 object3 object4
15,928 16,058 16,271 14,780

compared to 1440 and we can apply more over 10 times
dense learning. In the future work, we wish to explore
whether the convergence of Ωi exist or not, and we wish
to make its condition clear.

4.2 The Number of Upper Limit

If the samples xi ∈ RN are independent each other,
the parameter estimation has capability to make map-
ping up to N pieces of the samples. However, we can
see the parameter estimation failure at the 14800 to
15600 samples from the figure 6. We think the cause
of this estimation failure is related with the number of
valid pixels. In the figure 5, we can see the flat parts
at the four corners that are outside of circular part at
the coefficients. These parts are corresponding to the
background, and the element values in its part are con-
stant for any parameters. Therefore, these pixels are
not contributed as explanatory variable. We show the
number of valid pixels that contributed as explanatory
variable for each object in the table 1. These values
are corresponding with the number of samples, and
the pose estimations fail in these values. Therefore, we
think the upper limit of the number of the samples is
decided by the valid pixels. However, the gradual in-
crease of the estimation error before valid pixel is still
mystery. The curse of dimension is well known, but
the cause of this phenomenon is not depending since
employed sequential update scheme has no approxima-
tion by the subspace. In the future work, we wish to
make this mystery.

4.3 The Accuracy Decrement with The
Increase of the Number of Samples

In the result that is shown in section 3.1, the accu-
racy of the parameter estimation is raised with increas-
ing of the number of samples. However, the accuracy
was dropped with increasing of the number of samples
in case of section 3.2. Its difference might be explained
with the remaining degrees of freedom of invariant pro-
jection. In the two DOF parameters estimation prob-
lem of θ and ψ, the θ estimation is written as

cos(θ) = Ωθ
c

′T
Gψx (20)

sin(θ) = Ωθ
s

′T
Gψx (21)

by using invariant projection Gψ for ψ. This means the
input image is converted to the in plane rotation invari-
ant image for the continuous rotation by ψ and inde-
pendent component is only r pixels that is the length
of radius. Therefore, the parameter estimation is failed
by more than r variations of θ. In its experiment, the
number of step of psi was 256 and the image rotation
is able to regard as smooth change. Therefore, its re-
maining degree of freedom was only 64 and it is less
than 72 of theta variations. We think the reason of the
accuracy drop is connected to this, but it is not con-
firmed yet. In future work, we are going to make this

relation clear.

5 Conclusion

In this paper, we employed the sequential update
scheme for the calculation of regression coefficients.
We apply this scheme to image parameter estimation
with the dense samples and showed the parameter es-
timation ability by the linear regression. Through the
experimental results, we showed the condition of the
error-free estimation by the linear regression. In ad-
dition, we confirmed the linear parameter estimation
method has the capacity to learn the number of sam-
ples up to the number of valid pixels. However, exis-
tence of coefficient convergence and the cause of grad-
ual increase of the estimation error are still mystery.
We wish to figure out these mysteries in the future
work.
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