
Model-based 3D Object Tracking with Online Texture Update

Keisuke Tateno Daisuke Kotake Shinji Uchiyama
 Visual Information Technology Development Center, Canon Inc.

3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 JAPAN
{tateno.keisuke, kotake.daisuke, uchiyama.shinji}@canon.co.jp

Abstract�

We propose a real-time 3D object tracking method
robust to illumination change. Recent research studies
on edge-based tracking using a 3D CAD model have
mainly focused on improving robustness to rapid motion,
with little attention given to illumination change. We
tackle this problem by dynamically estimating the sur-
face texture information of the 3D model of an object to
be tracked, as well as its pose. The effectiveness of our
method is shown through experiments in real settings.�

1 Introduction

Vision-based 3D object tracking, which estimates the
pose of an object in 3D space using image information
obtained by camera, has various applications in a variety
of fields such as machine vision and augmented reality.
In this paper, we focus on tracking of artificial objects:
industrial products and their parts. Tracking such objects
is useful in machine vision applications such as auto-
nomous assembly by robot. Typically, such artificial
objects are poorly textured and consist of artificial line
segments. Therefore, edge-based tracking [1] is suitable
for such objects because artificial lines usually appear as
“edges” on an image.

Edge-based tracking seems to be robust to illumina-
tion changes because an edge is defined as the only place
where the intensity changes sharply and it can be stably
detected under different lighting conditions. However,
this invariance to illumination changes leads to a lack of
identity information of an image edge. This means that it
is difficult to correctly match an image edge and a 3D
line segment after rapid motion, often leading to tracking
failure. Some methods using additional information
[2,3,4] are very robust to rapid motion, but cannot be
applied in our scenario because one method can only
track a moving camera on which an inertia sensor is at-
tached [2], and others assume that the object to be
tracked has a rich texture [3, 4].

In order to improve the matching performance without
additional information, Wuest et al. proposed a method
that uses local appearance information (profile) from
around an image edge [5]. Reitmayr et al. also proposed
a similar method, using the profile from around image
edges in the rendered image of a 3D textured model [6].
These methods can significantly improve the matching
performance. However, they are not robust to illumina-
tion change because it is assumed in [5] that the visibility
of each 3D line segment never changes under different
illumination conditions, and in [6] that the lighting con-
ditions never change and therefore texture data is

constant. In real indoor environments, the appearance of
the object can easily change even with a slight move-
ment of the object or the camera, because the distance
between the object and the light source is short. In such
environments, the visibility of each edge and its local
appearance change dynamically and therefore they can-
not be regarded as constant as assumed in [5] and [6].

In this paper, we propose a 3D object tracking method
using a 3D CAD model composed of meshes and their
texture images. To endure illumination change, our me-
thod dynamically estimates not only the pose of an
object, but also the surface appearance information of the
object. Different from the method in [5], the appearance
information is saved in the 3D space as the texture image
of the 3D CAD model.

2 Edge-Based Pose Estimation Using

Textured 3D Model

In this section, we explain the 3D object tracking me-
thod based on the method described in [5]. This is the
basis for our method. The 3D model of an object is a
mesh model constructed from triangular patches. Each
patch has a photorealistic texture image, making it possi-
ble to produce realistic CG images. It is assumed that the
camera’s intrinsic parameters such as focal length and

Figure 1: Pose estimation using textured 3D model.

Step.1 Render CG

Step.3 Extract edgelets

Step.6� Compute pose

Step.4 Find candidates on
video image

Step.2 Detect edges from
rendered image

Step.5 Establish first
correspondences

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN8-14

261

radial distortion are known. Below, we explain the pose
estimation method shown in Fig. 1 step by step.

Step 1 – Step 3 “Extract 3D edgelets”
First, the CG of an object is rendered based on the

pose in the previous frame (for the first frame, we use a
pre-determined pose). Then, edges are detected from the
rendered image using a Canny edge detector [7]. Among
detected edges, some are selected so that they will be
equidistant from each other in the image. Finally, the 3D
position and orientation are assigned to each selected
edge using the rendered depth image. Hereafter, we refer
to such 3D edge having its position and orientation as
“edgelet” [8].

Step 4 “Find candidates on video image”
In this step, some edges that can correspond to each

edgelet are found on the video image. First, each edgelet
is projected onto the image, and its 2D position and
orientation are computed. Then, edges are searched on the
image along the search line normal to the projected ed-
gelet. For each edgelet, multiple detected edges are
retained as candidate corresponding edges.

Step 5 “Establish first correspondences”
For each edgelet, the most likely corresponding edge is

selected among the candidates using the “profile” around
the edges. The edgelet profile is obtained from the ren-
dered image as the 1D vector composed of the 15 intensity
values, which is sampled along the line normal to the
projected edgelet. Similarly, the profile for each candidate
is obtained from the video image. Then, the correspon-
dence is established based on the sum of squared
difference (SSD) between the two profiles (one for the
edgelet and the other for the candidate edge).

Step 6 “Compute the pose”
The pose of the object is calculated using an iterative

calculation process. If there are at least six correct cor-
respondences, it is possible to calculate the pose.
Generally, the precision of the estimated pose increases as
the number of correspondences increases. However, if
some incorrect correspondences are included in the data,
the precision of the estimated pose decreases, often
leading to a tracking failure. In order to reduce the in-

fluence of such incorrect correspondences, an M- esti-
mator is incorporated into the calculation process. In each
iteration step, the 6D correction vector of the pose is
computed in such a way as to minimize the sum of the
squared 2D distances between the projected edgelets
based on the pose and the edges that correspond to those
edgelets. As described in [5], the correspondences ob-
tained in Step 5 are used to compute the correction vector
in the first step, whereas the correspondences are
re-established in all subsequent steps by selecting the
edge that is closest to the projected edgelet using the
corrected pose.

3 Pose Estimation with Online Texture
Updating

In this section, we propose a pose estimation method
that dynamically updates the texture of the 3D model
using the pose estimation results. Figure 2 shows the
entire process flow of the proposed method. The flow
can be divided into the following three steps:

1) Pose estimation

The pose is estimated as described in Section 2.
2) Decision to update

Following the pose estimation step, it is determined
whether or not to update the texture of the 3D model
by evaluating the estimated pose. The texture images
are updated, using only those frames where the pose
estimation is deemed successful.

3) Texture updating
Based on the decision in 2), the texture images are

updated using the estimated pose and captured image.

Below, we detail the Step 2) and 3) and omit the ex-
planation of Step 1) because it is described in the
previous section.

3.1 Decision to update

In our method, the estimated pose is completely
trusted in the process of texture updating; therefore, if
the pose is not correct, the texture images are incorrectly

Large error in updated texture

Small error in pose estimation

Figure 4: Texture in contour
 region affected by small error.

Y
N

Figure 2: Flow of proposed
method.

Update?

Calculate index for
decision to update

Update texture

Compute pose

Start

Figure 3: Texture updating affected by
pose estimation results.

(1) Correct pose estimation

Texture updated

(2) Incorrect pose estimation

Texture updated

Video image
with overlaid

pose estimation result

Renderd image
using

updated texture

262

updated as shown in Fig. 3. Hence, it must be first de-
cided whether or not the pose has been successfully
estimated, and then the texture images are updated only
when the pose estimate is deemed successful.

To determine whether or not the pose estimate is suc-
cessful, we use the quality-of-tracking value proposed in
[6] as an index. This value is calculated based on the
inlier rate of the pose estimation results. The inlier rate is
the ratio of edgelets deemed to be correctly correspond-
ing to the correct images edges, to all the edgelets
created from the 3D model. The higher the index value is,
the more accurately we consider the pose is estimated.
The following are the specific procedures for determin-
ing whether or not to update.

1) Calculate the quality-of-tracking value

The inlier rate is computed as the percentage of ed-
gelets considered to be inliers in an M-estimator
among all the edgelets. Then, the quality-of-tracking
value is calculated as described in [6].

2) Make a decision on updating

If the quality-of-tracking value exceeds a certain
threshold, the system determines that the pose estima-
tion is sufficiently accurate and the texture can be
updated; otherwise, the system only proceeds to the
pose estimation process in the next frame.

3.2 Texture updating

Our method updates the texture by mapping the pixels
within the object area on the video image onto the tex-
ture image, based on the estimated pose. However, some
part may not be suitable for updating. For example, the
texture images that obtains pixels near the boundary be-
tween the object and the background may be
significantly affected by a pose estimation error, as
shown in Fig. 4. This can happen even when the pose
estimation error is small. In our method, the decision to
update the texture is a global decision, not caring about
each local mismatch. Hence, updating texture images
near the object's boundary is avoided by identifying the
boundary contour of the 3D model. The following are the
specific procedures for updating the texture.

1) Compute the planar homography between the video
image and the texture image

First, the three vertices and centroid (center of grav-
ity) of each triangular patch are projected onto the
image plane based on the estimated pose. From these
four corresponding points between the texture image
coordinates and captured image coordinates, the pla-
nar homography is computed.�

2) Identify boundary regions

Next, we determine if each triangular patch is lo-
cated in a boundary region or not. To identify a
boundary region, the depth buffer generated in the ed-
gelet extraction step is used. A region where the value
of this depth buffer changes significantly is identified
as a boundary region.

3) Map the captured image onto the texture image

For patches other than boundary regions, the pixel
values of the video image are mapped onto the texture
image using the planar homography computed above.
These procedures are carried out for each triangular
patch.

4 Experiment

In this section, we evaluate the robustness of our me-
thod to illumination changes through experiments in real
environments.

Overview of experiments
In this experiment, we use a Flea2 manufactured by

Point Grey Research. The image size we use is 640×480.
The internal parameters of the camera, including its radi-
al distortion, are pre-calibrated. For processing, we use a
desktop PC equipped with an Intel Pentium 4 3.8 GHz
(CPU) and an nVIDIA GeForce7800GTX (GPU). Since
the computational cost of the edgelet extraction and tex-
ture updating is too high to be done in real-time, such
two processes are separated from the pose estimation
process and executed in a different thread from the
thread for pose estimation in our implementation. This
means that the 3D edgelets used in pose estimation are
different from the ones extracted in the previous frame.
We measured the average frame rate of our method and
the accuracy before actual experiments. Our method with
the 2500 polygon model runs about at 20 fps on the PC
mentioned above. The accuracy was measured for one
selected frame by comparing the pose obtained by our
method and the reference pose that is believed to be
close to the true pose. The reference pose is obtained by
manually establishing the correct correspondence be-
tween edgelets and image edges and refined a given prior
pose using the method described in Section 2. The 3D
positional and rotational errors are about 3mm and 0.2°,
respectively.

Experiment on robustness to illumination change
We compare the proposed method with the method

without texture updating (similar to the method in [6]).
For the objects to be tracked, we use a commercial digi-
tal single-lens reflex camera and inkjet printer, which are
placed against a simple, predominately white back-
ground. We use a pre-recorded sequence of images that
includes a light source change. In this sequence, the ob-
ject and the video camera (Flea2) move independently.
We applied both methods to the same sequence. The
initial texture images of the 3D models were created in
advance from real images.

Figure 5 shows the results of pose estimation. The top
row shows the common results of both methods in the
frames before the light source changed, the middle one
shows the results of the method without texture updating
in a frame after the light source changed, and the bottom
one shows the result of the proposed method in the same
frames as in the middle row. The left two columns show
the tracking results for the camera, and the right ones
show the tracking results for the printer. The 3D models
are overlaid onto each video image using the estimated

263

pose. If the rendered line segment matches the image
edges of the object, the pose is considered to be accu-
rately estimated.

Before the light source changed, the pose was cor-
rectly estimated by both methods. After the light source
changed, however, the pose estimation method without
texture updating failed because the rendered images of
the 3D models were quite different from the object in the
video images. On the other hand, the proposed method
correctly estimated the pose, as can be seen by the fact
that the lighting change accurately reflected on the tex-
ture images. These results show that the proposed
method is robust in situations where the light source
changes.

5 Conclusions

In this paper, we proposed a method that dynamically
updates the 3D model as well as the pose. This method
makes it possible to dynamically reflect the physical ap-
pearance changes of the object onto the 3D model by
obtaining the texture images from the video images when
the pose is correctly estimated. A comparative experiment
under conditions of illumination change proved the va-
lidity of the proposed method.

The method proposed in [5] also updates the appear-
ance information of the 3D model as in our method. Two
methods differ in that the appearance information in [5]
is held in 2D image space, while our method holds it in
3D space on the object. Since the 3D appearance infor-
mation can be projected onto an image more correctly
than 2D appearance information, the performance of
matching of a 3D edgelet and its corresponding edge can
be better than [5].

One of the future challenges is to cope with the error
accumulation on the texture images. Since the error is
always included in the estimated pose, the error on the
update texture images accumulates as the texture is up-

dated. This problem cannot be avoided as far as the
timated pose is completely trusted in texture update. To
solve this problem, it is necessary to introduce the pose
estimation framework based on some absolute indices.
For example, some 3D lines which is almost always sa-
lient and not updated can be used as absolute indices.
Otherwise, as described in [9], only the brightness change
information is updated while the texture information itself
is fixed. The method in [9] is computationally complex
compared to our method, but it is a good suggestion for
future improvement.

References
[1] A. I. Comport, E. Marchand, and F. Chaumette, “A

real-time tracker for markerless augmented reality,” Proc.
ISMAR’03, pp. 36-45, 2003.

[2] G. Klein and T. Drummond, “Tightly integrated sensor
fusion for robust visual tracking,” Proc. BMVC’02, pp.787
-796, 2002.

[3] E. Rosten and T. Drummond, “Fusing points and lines for
high performance tracking,” Proc. ICCV’05, pp.1508-1515,
2005.

[4] M. Pressigout and E. Marchand, “Real-time 3D model-
based tracking: combining edge and texture information,”
Proc. ICRA’06, pp.2726-2731, 2006.

[5] H. Wuest, F. Vial, and D. Stricker, “Adaptive line tracking
with multiple hypotheses for augmented reality,” Proc.
ISMAR’05, pp.62-69, 2005.

[6] G. Reitmayr and T. W. Drummond, “Going out: robust
model-based tracking for outdoor augmented reality,” Proc.
ISMAR’06, pp.109-118, 2006.

[7] J. F. Canny, “A computational approach to edge detection,”
IEEE Trans. on PAMI, vol.8, no.6, pp.679-698, 1986.

[8] E. Eade and T. Drummond, “Edge landmarks in monocular
SLAM,” Proc. BMVC’06, pp.7-16, 2006.

[9] H. Yang, G. Welch, and M. Pollefeys, “Illumination insen-
sitive model-based 3D object tracking and texture
refinement, ” Proc. 3DPVT’06, pp.869-876, 2006.

Results of
pose estimation

Rendered images
(camera)

Rendered images
(printer)

Frame before
light source change
(Both methods)

Frame after
light source change
(Method
without updating)

Frame after
light source change
(Method
with updating)

Figure 5: Results of experiments.

Results of
pose estimation

264

