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Abstract

There has been a lot of research on ellipse fitting and 
measuring ellipticity of a set of points. However, when the 
shape is primarily hyperbolic or parabolic, there are no 
existing methods to measure such properties. This paper 
describes the first known methods of measuring conicity, 
hyperbolicity and parabolicity of a set of points. After 
finding the best conic fit, we measure the corresponding 
ellipticity (using a known method), hyperbolicity or 
parabolicity value with respect to that best fit. We are 
interested in measures which rely exclusively on shape 
boundary points. They should also be calculated very 
quickly, be invariant to rotation, scaling and translation. 
The evaluation of fits transforms the point data into polar 
representation where the radius in this representation is 
equal to the difference of distances from each point to 
both foci (for hyperbolas), and the sum of distances from 
each point to the focus and a line parallel to the directrix 
line (for parabolas). The linearity of the polar 
representation will correspond to the quality of the fit for 
the original data. The conicity measure is tested on a set 
of 45 shapes.  

1   Introduction 
Classifying a shape as a certain primitive is important 

in image processing applications and computer vision 
systems. Popular shape measures such as elongation, 
convexity and orientation exist in literature [3, 5, 8, 9]. 
Finding a shape that best represents a set of points is called 
fitting. Like other measures for primitive geometric 
shapes, the measures of conic fitting are motivated by real 
world image processing problems. Ellipticity is common 
in nature and industry, and finding a way of identifying it 
can be important to both. Applications of ellipse 
identification are found in agricultural and medical 
imaging systems for identifying certain grains, onions, 
watermelons, cells, and even human faces [4]. 
Hyperbolicity and parabolicity are less common, but 
nonetheless have applications such as automatic industrial 
inspection and in x-ray diffraction imaging (where the 
centers of the atoms lie on hyperbolae) [7]. In this article 
we study two related problems: conic fitting and 
measuring of shape ellipticity, hyperbolicity and 
parabolicity, via a unified notion of conicity. One of the 
main advantages of our algorithm is that it is boundary 
based and therefore works on both open and closed curves. 
Our algorithm has image processing applications in mind 
which deal with pixels as points, but also accept real 
numbers as input. 

In designing our algorithm for conic fitting and 
measuring, we restrict ourselves to the following criteria. 
Conicity values are assigned to sets of points and these 
values shall be numbers in the range [0, 1]. The conicity 
measure equals 1 if and only if the shape is an ellipse, 
hyperbola or parabola, and is close to 0 when the shape is 
highly non conic. A shape’s conicity value should be 

invariant under similarity transformations of the shape, 
such as scaling, rotation and translation. Conicity values 
should also be computed by a simple and fast shape based 
algorithm. As in existing literature [1, 2], the points in the 
set are not ordered; that is, conicity fits and conicity 
measures do not depend on the ordering of points in the 
data set or along the boundary. 

Stojmenovic and Nayak [5] proposed a novel way of 
measuring the accuracy of ellipse fits against the original 
point set.  The solution is to transform the point data into 
polar representation where the radius is equal to the sum of 
distances from the point to both foci, and the polar angle is 
equal to the one the original point makes with the center 
relative to the x-axis. The linearity of the polar 
representation will correspond to the quality of the ellipse 
fit for the original data.  They also propose an ellipticity 
measure based on the average ratio of distances to the 
ellipse and to its center. The choice of center for each 
shape impacts the overall ellipticity measure. They discuss 
two ways of determining the center of the shape.  

Ellipse fitting has been widely studied in literature. 
Hyperbola fitting was studied in [1, 7], but they do not 
address the quality of the fit in these studies. The 
algorithm presented here fits a conic to a set of points, and 
evaluates the quality of the fit. We will apply a shape 
sampling based method [2] by Rosin because his papers 
indicate it as the ultimate selection. The conic fit is done 
by taking n quintuplets of points as proposed by [2]. 
Should these points be part of a conic shape, then each one 
should satisfy an equation of the form 
ax2+bxy+cy2+dx+ey+f=0, which is the standard equation 
of a conic in 2D space. This system is solved via Gaussian 
elimination to determine the values of the 5 coefficients. 
By repeating this procedure k times, and taking the median 
value for each coefficient, a more reliable fit is obtained. 
The coefficients themselves determine the type of conic 
obtained by the fit. The foci, center and orientation of the 
shape can be extracted from the 5 coefficients. The 
evaluation of fits transforms the point data into polar 
representation where the radius in this representation is 
equal to the sum of distances from each point to both foci 
(for ellipses [5]), the difference of distances from each 
point to both foci (for hyperbolas), and the sum of 
distances from each point to the focus and a line parallel to 
the directrix line (for parabolas). The polar angle is equal 
to the one the original point makes with the center of 
gravity of the shape in the case of ellipses and hyperbolas 
and the focus in the case of parabolas, relative to the x-
axis. The radius and/or polar angle are then suitably 
transformed and normalized for the purposes of scalability. 
The Polar angle becomes proportional to the complete 
range of angles [0, 2�], by stretching the original range of 
angles to fit the new one if necessary. The radius is 
multiplied by a factor to convert it to an angular range, so 
that the conicity remains the same regardless of the 
shape’s scale. The linearity of the polar representation will 
correspond to the quality of the fit for the original data. 
Any one of the six linearity measures in [3] can be used as 
a base of our conicity algorithm. We chose the ‘average 
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orientations’ linearity measure since it was previously 
shown to be most accurate compared to human perception. 

Overall in this paper, we propose a novel algorithm, 
which combines the fit of point sets to conics as described 
in [2] with our own assignment of conicity values to sets 
of points in 2D. The detailed literature review is omitted 
due to space constraints, and can be found in [5]. The new 
measures are presented in section 2. Section 3 is reserved 
for the presentation of our test set along with a general 
discussion of our results.   

2 Measuring Conicity: Ellipticity, 
Hyperbolicity and Parabolicity 

Our new conicity measure is presented here. It 
comprises of fitting a conic to point data, and then, based 
on the fit, finding a measure of its ellipticity, hyperbolicity 
or parabolicity. Fitting a conic to a point set is done via 
Rosin’s [2] 5 point conic fitting algorithm. The evaluation 
of the fit is done by applying a transformation to the input 
points (depends on the conic being evaluated: ellipse, 
hyperbola, or parabola), such that they are transferred to a 
polar form representation. The linearity of the polar form 
representation then corresponds to the conicity for the 
particular shape of the original points.  

2.1 Evaluating the conic fit 
Once the parameters of the conic have been established 

(foci, shape orientation…), we can evaluate how well it 
fits with respect to the shape. We use the properties of 
each of the potential conics we are dealing with to 
transform the original Cartesian coordinate set of points 
into polar form in order to evaluate the linearity of the 
polar form. This linearity corresponds to the conicity of 
the original set. If the conic fit was an ellipse then the 
method proposed in [5] is applied to measure the ellipticity 
which is also assigned as the shape’s conicity value.  If the 
best fit was a hyperbola or a parabola then the 
corresponding novel methods of measuring these 
properties are used to measure conicity, as explained in the 
rest of this section. 

2.2 Evaluating hyperbolicity 
Hyperbolicity is evaluated in nearly the same way as 

ellipticity. One of the defining well known properties of a 
hyperbola is that the difference of distances from each 
point on the shape to its foci is constant. Figure 3 
illustrates this point.  

We exploit inherent hyperbola property (see Figure 3) 
when transforming the point set to polar coordinate form. 
The polar distance value for each point P from the center 
G will be the difference of distances from P to both foci, 
r=d1 - d2. The angle � in the polar representation will 
remain the same as the angle � between GP and the x-axis. 
For a perfect hyperbola, the resulting shape can be drawn 
as an incomplete circle, as seen in Figure 4, since the 
radius values for all possible angles � do not exist. If its 
polar coordinate points are plotted as Cartesian, they 
would look highly linear. Applying a linearity measure to 
this polar representation results in a hyperbolicity value for 
the modified set of points.  

 
Figure 3 Measuring the hyperbolicity of the point set 

 
Figure 4 Polar point set of a hyperbolaon a planar graph 

Due to the gap between the two parts of a hyperbola, 
the shape was split in 2 components in its polar form as 
well, as seen in Figure 4. The linearity of two separate line 
segments taken together increases as the distance between 
them increases. This property unnaturally increases the 
hyperbolicity score of any tested shape. To eliminate this 
bias, the two parts of the set’s polar representation are 
overlapped and linearity is measured on the overlapped 
set. To overlap the two parts, the angles of the points for 
which d1 – d2 < 0 was increased by a value of �, otherwise 
the angles of the remaining points were left unchanged. 
The range of angles present in the polar representation of 
hyperbolas is relatively small, and as such does not permit 
an adequate representation of the shape. The angles are 
therefore stretched to the interval [0, 2�] to get a 
normalized representation of the shape. Each angle � is 
adjusted to �’ by the following calculation: �’

 = 360·(�-
�min)/(�max – �min). Each radius r is normalized to yield r’ 
as follows: r’=(r·k)/(2a), where k is a constant whose best 
value will be experimentally derived. This radius 
normalization places the range of possible radii in ranges 
comparable to the angular ones.   

2.3 Evaluating parabolicity 
Parabolicity is also evaluated by exploiting one of the 

inherent properties of parabolas, then converting the point 
set to polar form while making use of this property, and 
finally measuring the linearity of the polar representation 
which in effect corresponds to the parabolicity of the 
original set. Figure 6 demonstrates the exploited parabola 
property used in our work. Figure 6 shows a parabolic 
curve, along with an arbitrary line L, focus F, and a point 
on the curve p1. L is an arbitrary line perpendicular to the 
axis of symmetry and opposite the focus of the parabola 
from the vertex. The length of d1+d2, where d1 is the 
distance from the focus F to the point p1, and where d2 is 
the distance from line L to point p1, is the same for all 
points on the shape. This is a similar well known property 
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[6] to that of the ellipse, except that one focal point is at 
infinity. Note that an alternative method may compare 
distances of points from the focus and directrix line, which 
are supposed to be zero. However this method reduces the 
circle’s radius in polar coordinates to 0, which is unstable 
and will produce unclear random measures. 

 
Figure 6 Measuring the parabolicity of the point set 

To find line L, we first project the original shape points 
onto the line of symmetry of the parabola. This line of 
symmetry is the shape orientation line that passes through 
the focus, as was determined by the 5 coefficients from the 
point sampling technique described in section 3.1. Once 
the points are projected on the orientation line, the end 
points proj1, proj2 of this line of projections are found. The 
end point which is furthest from the focus corresponds to 
one of the points on the line L. The slope of line L is the 
inverse (perpendicular) of the slope of the shape 
orientation line. Applying a polar transformation to the set 
of points such that polar distance value for each point pi 
from the focus F will be the sum of distances from pi to 
the focus F and from pi to the line L, r=d1 + d2. The angle 
� that vector Fp1 forms with the x-axis will remain the 
same in polar coordinates. For a perfect parabola, the 
resulting shape can be drawn as an incomplete circle since 
the radius values for all possible angles a do not exist. In 
Figure 6, we observe that the dashed top part of the blue 
circle would not exist in the polar representation since it 
does not have corresponding points in its Cartesian 
representation. If its polar coordinate points are plotted as 
Cartesian, they would look highly linear. Each radius r is 
normalized to yield r’ as follows: r’=(r·q)/(|proj1-proj2|), 
where the best value for constant q will be experimentally 
determined, and proj1 and proj2 are the extreme values of 
the projection point on the line of symmetry of the 
parabola fit, as seen in Figure 6. This radius normalization 
places the range of possible radii in the interval [0, 360], 
which corresponds to the interval of possible angles of the 
radii points. Applying a linearity measure to this polar 
representation results in a parabolicity value for the 
modified set of points.  

3 Experimental data and results 
We implemented Rosin’s 5 point sampling method as 

follows. K=500 quintuplets of points were randomly 
selected from the point set such that no 2 points can be at a 
distance less than 10 pixels away from each other. This 
prevents errors in sampling by ensuring that the sample 
points cover a representative area of the point set. 

In practice, our experiments were performed on images 
where the shapes were represented by pixels with integer 
coordinates. As such, it is very difficult to obtain a perfect 
shape, but rather a close approximation. This restriction 
did not affect the ability of the algorithm to identify 
ellipses and hyperbolas, but had an impact on parabolas. 
Since a continuous, perfect parabola is difficult to 
represent in a discreet coordinate system, such as the one 
present in images, the condition that specifies that a shape 
is a parabola: b2-4ac=0, is also difficult to satisfy. The 
method above gives appropriate results in the cases of 
ellipses and hyperbolas. Parabolas, on the other hand have 
only one focus, (where the other one is placed at infinity), 
which aids us in determining when we are dealing with a 
parabola, instead of relying on the condition of b2-4ac=0. 
We determine that we have encountered a parabola when 
the distance between foci is greater than twice the height 
of the image the shape is depicted in. This crude 
approximation of infinite distance between foci serves it 
purpose in practical terms, although it is not theoretically 
exact. In case of a parabola, we determine which of the 
foci is valid by comparing the distance of each focus to the 
center of gravity of the shape. The one which is closer is 
kept as the foci of the parabola. Evaluating the quality of 
the fit was described in section 3.1.  

The conicity algorithm was tested on a set of 45 
shapes, shown in Figures 7, 8 and 9. These 3 groups of 
shapes are chosen to equally represent shapes that appear 
elliptic, hyperbolic and parabolic. These shapes were 
assembled by hand and each one is comprised of between 
100 and 500 points. The angular range used was [0, 360], 
and the best values for the normalization factor k in the 
case of ellipses was 180, in the case of hyperbolas it was 
30, and q in the case of parabolas was 180 for our figures.  

Table I shows the conicity values for all of the test 
curves. For each curve, we see the shape designation 
assigned to it by the algorithm in the ‘detected’ column, 
and its corresponding conicity value in the ‘C’ column. 
When these 2 descriptors are taken simultaneously, the 
algorithm classifies a shape as an ellipse, hyperbola or 
parabola, and then assigns a value to this classification 
which describes how ‘elliptic’, ‘hyperbolic’ or ‘parabolic’ 
this shape appears to be.  

We notice that most of the first fifteen shapes that look 
elliptic are given relatively high scores and are correctly 
categorized as ellipses. Intrusions, such as those found in 
figure 8, and missing shape parts, such as those found in 
shapes 14 and 15 have little effect on the algorithm’s 
ability to correctly classify and measure the conicity of 
such examples. The conicity result for shape 13 is given 
the lowest overall elliptic score, since it does not appear to 
be a very convincing case of an ellipse. It however is even 
deserving of a place in either the parabola or hyperbola 
categories of shapes, and was therefore correctly classified 
as a weak ellipse.  

Shapes 16-30 were also correctly classified as 
hyperbolic by the algorithm. Hyperbolas are inherently 
comprised of disjoint point sets, but even when these 
disjoint sets are further broken up into smaller point sets, 
they can still be identified as hyperbolas, such as in the 
case of shape 23. Most of these shapes have high 
hyperbolicity values except for shape 28. This shape looks 
hyperbolic, and was classified as such, although due to the 
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highly jagged edges it contains, it was given a lower than 
expected hyperbolicity score.  

 
7. Elliptic shapes in  test set 

 
8. Hyperbolic shapes in  test set 

 
9. Parabolic shapes in test set 

The algorithm performed well when tested on shapes 
that appear to be parabolic as well. All fifteen shapes (31 
to 45) were correctly classified. Shapes that were missing 
significant parts (33, 36, 41, 43, 45) were not only 
correctly classified, but were also given relatively high 
parabolicity scores.  

Our work here has demonstrated its capability in 
identifying shapes that can visually be sorted into one of 
the three mentioned categories of conics. It however 
provides inconsistent results when encountering strange 
shapes that do not easily fit into any category of basic 
shape. In such instances, due mainly to the sampling 
technique that was used to fit a conic onto a curve, one of 
the three conic fits is forced onto a shape that does not 
appear to be anywhere close to a conic shape, and a low 
conicity score is awarded. The algorithm has also shown 
itself to be sensitive when dealing with shapes that appear 
to be conic, but contain a large number of imperfections or 

large amount of noise. In such cases, the shape is generally 
assigned to the correct conic category, but its conicity 
measure suffers disproportionally to the amount of noise 
present. It however very accurately detects and fits conics 
that have large sections missing, but otherwise easily form 
very good conic shapes.  

TABLE I. Conicity values of test shapes 
# detected C # detected C # detected C

1 ellipse .989 16 hyperbola 1.00 31 parabola .999 
2 ellipse .978 17 hyperbola .972 32 parabola .980 
3 ellipse .976 18 hyperbola .934 33 parabola .993 
4 ellipse .917 19 hyperbola .971 34 parabola .998 
5 ellipse .778 20 hyperbola .939 35 parabola .966 
6 ellipse .897 21 hyperbola .871 36 parabola .962 
7 ellipse .896 22 hyperbola .911 37 parabola .984 
8 ellipse .938 23 hyperbola .995 38 parabola .973 
9 ellipse .632 24 hyperbola .969 39 parabola .945 

10 ellipse .931 25 hyperbola .962 40 parabola .880 
11 ellipse .800 26 hyperbola .982 41 parabola .940 
12 ellipse .573 27 hyperbola .989 42 parabola .936 
13 ellipse .593 28 hyperbola .876 43 parabola .718 
14 ellipse .933 29 hyperbola .575 44 parabola .932 
15 ellipse .698 30 hyperbola .987 45 parabola .936 

Future work in this area includes making the algorithm 
more robust to noise and subsequently testing it on real 
world data. Once it is robust enough, it may be included in 
object detection systems for a variety of quality control 
applications in manufacturing plans for example. Other 
uses may encompass using the algorithm to ascertain 
conicity features in real time computer vision systems.  

Measuring hyperbolicity and parabolicity for any 
shape, including those where the best fit is in the other 
conic category is left as an open problem. This means 
finding an acceptable parabola or hyperbola specific fit, 
regardless of the input data. This appears to be a difficult 
problem to solve, especially for partially occluded or 
missing sections of shapes that are otherwise clear 
examples of parabolas or hyperbolas.  
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