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Abstract

We present a spectral mapping technique for semi-
supervised pattern classification. Importance scores of
features are firstly evaluated with a semi-supervised fea-
ture selection algorithm by Zhao et al. Training data
are then embedded into a low-dimensional space with a
spectral mapping derived from the selected and weighted
feature vectors with which test data are classified by the
nearest neighbor rule. The performance of the proposed
pattern classification algorithm is examined with syn-
thetic and real datasets.

1 Introduction

Spectral embedding (SE)[1, 2, 3] is a representative
graph spectral method for mapping data nonlinearly
into a low-dimensional classification space. While SE is
basically unsupervised algorithm similarly to the prin-
cipal component analysis (PCA), its extension to semi-
supervised learning has been proposed[4, 5].

The PCA and SE are a kind of distance metric
learning[6]. In the semi-supervised SE, the distance
metric is distorted locally on the basis of label informa-
tion of data. While this local distortion is propagated
along graph links to unlabeled data, it is difficult for
this method to get globally consistent distance metric,
hence its classification performance is insufficient.

Alternative to such local metric modulation, if we in-
corporate a semi-supervised metric learning technique
giving a global distance metric into the SE, we can ob-
tain a new semi-supervised SE algorithm with higher
classification rates.

As a such semi-supervised distance metric learn-
ing algorithm, a simple semi-supervised feature scor-
ing technique has been proposed and has proven to be
effective for image recognition by Zhao et al.[7].

We incorporate this feature scoring technique into
the SE algorithm and propose a new semi-supervised
pattern classification method. Our contribution in this
paper lies in the generalization of the SE algorithm.
This generalization enables the SE to map data with
enhanced separation between classes. This enhance-
ment in class separation improves the classification rate
of the method utilizing the SE mapping. We verify this

improvement in the classification rate with some ex-
periments for a synthetic toy dataset and real datasets
popularly used for benchmark test of classifiers.

2 Spectral Mapping

Let there be given m training data of feature vectors
fi from which the similarity between data i and j is
expressed by

sij = e−α‖fi−fj‖2 (i, j = 1, ..., m) (1)

2.1 Spectral Embedding

In the spectral embedding method[1, 2], each datum
i is mapped to the coordinate xi given by

max
m∑

i=1

m∑
j=1

xisijxj

subj.to
m∑

i=1

dix
2
i = 1

(2)

where di =
∑

j sij . With this mapping, mutually sim-
ilar data with large sij are projected close together
with near xi and xj . This mapping is equivalent to the
Laplacian eigenmaps[3]. The most fundamental form
of the constraint condition

∑
i dix

2
i = 1 in eq.(2) is∑

i x2
i = 1 that is the normalization of the norm of

x = [x1, ..., xm]T [8]. The role of multiplied di is to
homogenize xi as is explained below.

Eq.(2) is summarized in the vector form as

max xT Sx
subj.to xT Dx = 1 (3)

where S = [sij ] is the similarity matrix and
D=diag(d1, ..., dm) is the normalization weight ma-
trix. xT Sx represents the cohesiveness of data and
xT Dx denotes their variance. The solution of eq.(3)
is the generalized eigenvector of Sx = λDx of which
principal eigenvector with the eigenvalue 1 is constant
[1, ..., 1]/

√∑
i di due to the homogenization effect of

xT Dx = 1, hence we discard it and use the eigenvec-
tors from the second to the (p + 1)th when we project
the data into a p-dimensional space.
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2.2 Generalized Spectral Embedding

This mapping algorithm is unsupervised one where
the distance between data is Euclidean as is in eq.(1),
i.e. (fi − fj)T I(fi − fj) where I is the identity ma-
trix. In the semi-supervised learning, label informa-
tion is given for some training data, which induces
the modulation of distance metric into a generalized
quadratic form (fi − fj)T A(fi − fj) with a metric ma-
trix A with which the similarity sij is modified to
s̃ij = e−α(fi−fj)

T A(fi−fj) which enhances class sepa-
rability on the basis of label information.

Then a straightforward extension of eq.(2) is mod-
ification of both sij and di to s̃ij and d̃i =

∑
j s̃ij .

This simple scheme, however, does not work well be-
cause the normalization

∑
i d̃ix

2
i = 1 uniformizes xi

as was written above that the first eigenvector is con-
stant. This strong equalization effect in eq.(2) cancels
the enhanced class separability gained with s̃ij .

Hence we preserve di in its unmodified form and
propose, in this paper, to modify eq.(3) into a semi-
supervised form

max xT S̃x
subj.to xT Dx = 1

(4)

of which solution is the generalized eigenvector of S̃x =
μDx. Different from eq.(3) of which first eigenvector
is constant and is discarded, the first eigenvector of
eq.(4) is not constant and contains useful information
about data structure. So, we use its eigenvectors from
the first to the pth one for embedding data into p-
dimensional space. We call this mapping the General-
ized Spectral Embedding (GSE). The practical form of
S̃ will be shown after the next section.

3 Semi-Supervised Feature Scoring

In this section, we review the semi-supervised fea-
ture selection method by Zhao et al.[7]. Assume the
training data be partially labeled. We construct the
within class similarity sw,ij and between class similar-
ity sb,ij as

sw,ij =

⎧⎪⎪⎨
⎪⎪⎩

γ1 i, j ∈ same class
1 i or j is unlabeled and

i ∈ kNN(j) or j ∈ kNN(i)
0 otherwise

(5)

sb,ij =
{

γ2 i, j ∈ different classes
0 otherwise (6)

where kNN(i) is the set of k nearest neighbors of i. We
set k = 5 in the following experiments.

We next construct the within class Laplacian matrix
Lw and the between class Laplacian matrix Lb as

Lw = Dw − Sw

Lb = Db − Sb
(7)

where Dw=diag(dw,1, ..., dw,m)，dw,i =
∑

j sw,ij and
Db=diag(db,1, ..., db,m)，db,i =

∑
j sb,ij .

We finally compute the importance score of each
feature. Let the feature be an n-dimensional vector
fi = [f1i, ..., fni]T . We define the vector of the r-th
feature as gr = [fr1, ..., frm]T from which the score is
computed by

Lr =
gT

r Lbgr

gT
r Lwgr

(r = 1, ..., n) (8)

which is large for an important feature similarly to
Fisher’s discriminant criterion. Zhao et al.[7] select
the features with Lr greater than a threshold and called
this technique the Locality Sensitive Discriminant Fea-
ture (LSDF).

4 Semi-Supervised Pattern Classifica-
tion

We incorporate this LSDF into the GSE in section
2.2. Since the LSDF gives the score of each feature,
we restrict the metric matrix A diagonal and set it as
A = L2 where L = diag(L1, ..., Ln) with the LSDF
score Lr, that is, we modify the similarity in eq.(1) to

s̃ij = e−α(fi−fj)
T L2(fi−fj) (9)

where we set Lr below a threshold to 0.
As was written in section 2.2, we construct the simi-

larity matrix S̃ in eq.(4) from these modified s̃ij , while
maintaining the matrix D in the original form calcu-
lated from the unmodulated similarity in eq.(1). As
was explained in section 2.2, the aim of this mod-
ification of the SE lies in the relaxation of the too
strong homogenization effect of the normalization in
the SE. The weighting with L in the constraint con-
dition xT Dx = 1 makes the mapping of data globally
uniform and brings data close even in different classes.
Hence we uniformize L in the constraint xT Dx = 1 into
the identity matrix which relaxes this homogenization
effect on x and regains the enhancement of separation
of classes acquired with modified s̃ij .

We map the training data with this GSE into the
(c − 1)-dimensional classification space where c is the
number of classes.

Our proposed technique is summarized as
Step 1: We compute the original similarity sij =
e−α2‖fi−fj‖2 and construct D = diag(d1, ..., dm), di =∑

j sij .
Step 2: We compute the feature score Lr with the

Figure 1: Synthetic data.
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(a) SE (b) SemiSE

(c) LSDF+SE (d) LSDF+GSE

Figure 2: Mapped data.

Table 1: Error rates for test data.

　　　　　　　　 　 test error(%)　　
SE 18.75

semiSE 17.50
LSDF 33.75

LSDF+SE 33.75
LSDF+GSE 0

LSDF in section 3 and construct L = diag(L1, ..., Ln).
Step 3: We compute the modified similarity s̃ij =
e−α1(fi−fj)

T L2(fi−fj) and construct S̃ = [s̃ij ].
Step 4: We execute the GSE in section 2.2 and com-
pute the eigenvectors from the first to (c− 1)th one.
Step 5: We map every training datum into (c − 1)-
dimensional space and we label all the unlabeled data
by the nearest neighbor rule with the weighted distance
(fi − fj)T L2(fi − fj) to labeled data.

This finishes the learning phase where all training
data are labeled. In a test phase, we classify test data
by the nearest neighbor rule with the weighted distance
between test data and all the training data.

5 Experiments

We compare the performance of the proposed
method LSDF+GSE with SE[1, 2], semi-supervised SE
(SemiSE)[5], LSDF[7] and LSDF+SE. In each method,
we adjust their parameters to the value with their best
performance.

5.1 Synthetic Data

We firstly experiment with the data in Fig.1 which
includes 3 classes. Data are arranged on three straight
lines. Two horizontal lines are composed of 40 data
points and the central inclined line includes 80 points.
At each line, data are separated into the training and
test data interleaving one by one. Only sampled train-
ing data are plotted in Fig.1 where the large marks at

Table 2: Data configuration.

dataset dim. class data labeled test
iris 4 3 150 9 60
liver 6 2 345 6 173
iono. 34 2 351 6 176
vote 16 2 435 6 218
crx 15 2 690 6 345

Figure 3: LSDF score for iris dataset.

the left, right and bottom ends are labeled data which
exist only one in each class.

Mapped training data are shown in Fig.2 where ▲
and ＊ are two horizontal line classes in Fig.1 and ●
is the center slant line class. The proposed method
succeeds to separate three classes while they are glued
together in other methods. We verify with this figure
that the GSE in section 2.2 is efficient for enhancing
the separation of classes and hence improve the classi-
fication rate. The error rates for test data are shown in
table 1 where our proposed method (LSDF+GSE) can
classify test data perfectly. Note that no improvement
is gained by the combination of LSDF and SE. Thus
the proposed generalization for the SE is essential for
the classifier.

5.2 Real Data

We next experiment with five dataset: iris, liver,
ionosphere, vote and crx in the UCI benchmark data[6]
popularly used for testing the performance of classi-
fiers. Their data configuration is shown in table 2.

5.2.1 Feature Score

We firstly examine the feature score in the LSDF for
the iris dataset which includes four features: sepal
length, sepal width, petal length and petal width.
Their LSDF scores are 2.13, 0.18, 4.16 and 3.90 as
is shown in Fig.3 where ■ marks on the third (petal
length) and the fourth feature (petal width) denotes
that the classification rate is highest when we select
these two features, i.e. set L1 and L2 to zero.

Mapped training data are shown in Fig.4 where four
cases of combination of features are examined in the
order of value of Lr: (1) only 3rd feature, (2) 3rd
and 4th features, (3) 3rd+4th+1st features and (4) all
3rd+4th+1st+2nd features. In Fig.4, labeled data are
shown with large marks. Class separation is largest in
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(a) only 3rd (b) 3rd+4th

(c) 3rd+4th+1st (d) 3rd+4th+1st+2nd

Figure 4: Mapped iris data.

Table 3: Error rates for each combination of features.

combination　 　 test error(%)　　
only 3rd 5.00
3rd+4th 1.67

3rd+4th+1st 8.33
3rd+4th+1st+2nd 11.67

Fig.4(b), i.e. selection of the 3rd and the 4th features
is the best.

The error rates of test data are shown in table 3 for
these feature combinations. Coincident with the result
of Fig.4, the classification rate is highest when the 3rd
and the 4th features are selected. This superiority of
the 3rd and the 4th features is the well known fact for
the iris dataset.

The LSDF scores in other four datasets are shown
in Fig.5 where ■ marks denote the best selection of
features similarly to Fig.3.

5.2.2 Classification Rates

The error rates of five algorithms for these iris, liver,
ionosphere, vote and crx datasets are shown in table
4. We use the selected features marked with ■ in
Fig.3 and Fig.5. The classification rate of the pro-
posed method (LSDF+GSE) is highest among these
methods.

6 Conclusion

We have presented a semi-supervised spectral map-
ping method where the semi-supervised feature scoring
technique by Zhao et al. is incorporated into the spec-
tral embedding algorithm. We have extended the spec-
tral mapping algorithm to a generalized form and have
shown that this generalization is effective for improving
the classification rate of the proposed semi-supervised

(a) liver (b) ionosphere

(c) vote (d) crx

Figure 5: LSDF scores.

Table 4: Error rates for UCI benchmark datasets.

test error iris liver iono. vote crx
SE 3.33 49.71 36.36 15.14 32.75

SemiSE 3.33 49.13 32.95 15.14 32.46
LSDF 3.33 39.31 18.75 14.22 33.91

LSDF+SE 3.33 37.57 32.95 14.22 33.62
LSDF+GSE 1.67 35.84 16.48 11.93 27.83

pattern classifier. Theoretical elaboration of the pro-
posed method is a subject of future researches.
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