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Abstract

In this paper, we describe a high speed and multi de-
gree of freedoms (DOFs) pose estimation method for a
3-D object that called Estimation-by-Completion (EbC)
method. The most of employed processes are described
with linear calculation, thus, whole procedure for each
parameter estimation is expressed by a pair inner pro-
duction, and it used only an arctangent calculation at
the final part of the estimation. The accuracy evalua-
tion by 3DOFs pose estimation that includes rotation
around the object’s vertical and horizontal translations
is shown in experiment. We also describe its calcula-
tion cost in discussions.

1 Introduction

The posture and position estimation problem of 3-
D object from 2-D monocular image are the most ele-
mentally but important computer vision problem. For
this problem, many solutions were proposed and these
methods are classified by two methodology that model
based and the appearance based. The appearance
based method that famous for parametric eigenspace
method[6, 8] is convenient for application and easy to
learn for recognition, because that method needs no
geometrical models. Therefore, the appearance based
method is a promising approach for complex shape ob-
ject recognition. The parametric eigenspace method
is the method that used the eigenface[12] of the com-
puter vision problem of human face recognition for con-
tinuous variation image sequences by the rotation of
the object and illumination direction. Since the para-
metric eigenspace method is convenient and well re-
producible, it applied for moving object recognition[7],
visual servo[4], illumination planning[6], shape from
shading, etc. However, the appearance based method
has a problem that vast learning samples are necessary
by DOFs of the object movement and illumination vari-
ations.

Amano et al[2] proposed a solution to reduce learn-
ing samples by using range image but still range sensor
is not popular in the general applications. However, at
the applications for factory automation or visual nav-
igation, only estimation or recognition process needs
fast computation. Therefore, if it is acceptable compu-
tation cost, to learn in the short time is unnecessary,
because the eigenspace method learns beforehand. The
pose estimation method based on a linear model that
was proposed by Okatani et al[10]. is the method which
realized this idea. In this method, the parameters such
as postures are estimated by the inner product of input
image and coefficients that calculated by generalized
inverse matrix and the computational cost of parame-

ter estimation is dramatically reduced.
In this research, we describe the EbC (Estimation-

by-Completion) method that is a posture estimation
method based on eigenspace feature extraction and im-
age interpolation by the new approach and different
from Okatani’s method. This method attaches infor-
mation tracks at the bottom of learning sample im-
age and generates eigenvectors. In the parameter es-
timation process, the EbC method estimates posture
parameters by the decoding of the information tracks
that attached at the bottom of an image. However,
the information tracks are missing in the input image
acquired with camera or given for parameter estima-
tion. Therefore, BPLP (Back Projection for Lost Pix-
els) method that is image interpolation method based
on learning is used for the information track restora-
tion of an input image, and proposed method decodes
parameters by the inner production of basis vectors.

Since all these processes are linear operation, so we
can integrate and express these calculations to image
pairs (EbC Image Pairs). Therefore, we can estimate
parameters by correlation calculation of the image pair
and arctangent calculation for each parameter.

2 Estimation by the restoration

The EbC method uses interpolation technique
BPLP method[1] that based on the learning and re-
stores posture information track that attached to the
bottom lines of the learning image.

2.1 Overview of the BPLP method

The BPLP method uses eigenspace to perform inter-
polation. For the learning, we have learning sample im-
ages that expressed feature of the target for ready, and
we express these learning samples as N -dimensional
image vectors by the raster scanning of the image.

χ = [x1, x2, . . . , xN ]T (1)

where N = w × h is the number of pixels of each sam-
ple image, w and h are the width and height of the
sample image. Eigen vectors of the learning samples
{χ1,χ2, . . . ,χM} are given by SVD, etc., and sorted
by the eigen value and used D largest eigen vectors:

E = [e1, e2, . . . ,eD]. (2)

When an input image χ′ which some pixel values are
missing was given, we express missing parts by N ×N
diagonal matrix Σ,

Σ = diag(1, 1, . . . , 0, . . . , 1), (3)
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where that element’s values are being set on 0 or 1, if
the corresponding pixel values are missing or existing.
The input image χ′ that includes missing elements can
be expressed with

χ′ = Σχ (4)

by the matrix Σ, if we set the missing element value
as 0. From the projection points relation of the lacked
image and non-lacked image, missing elements are es-
timated and we get an estimated image

χ̂ = E(ET ΣE)−1ET χ′. (5)

2.2 Information Track Restoration

In this paper, we assume the object that forms a
smooth manifold by the continuous object’s parameter
change on the image vector space as well as paramet-
ric eigenspace method. Let χi denote learning samples
that sampled images densely to approximates manifold
shape on the image vector space. Also, we assume the
object’s parameter with posture or displacement is not
limit to one, and we give a description of three param-
eters θj , (j = 1, 2, 3) below. In learning, we attach the
information track

ηj = [yj1, yj2, . . . , yjw]T (6)

of the object’s parameters (e.g. postures, displace-
ment) at the bottom one line (Actually, length of ηj is
enough with a few pixels, if the sampling error due to
integer description is negligible.) of the image for each
parameter, and we get expanded leaning sample vector

ζ = [χT ,ηT
1 ,ηT

2 ,ηT
3 ]T . (7)

With this description, we compute an eigen space E for
M pieces of learning samples {ζ1, ζ2, . . . , ζM} as well
as BPLP method.

In a process of parameters estimation, we apply
BPLP method to expanded image vector

ζ′ = [χ′T ,0T ,0T ,0T ]T (8)

of an input image χ′, that lacked information tracks
because the object’s parameters of input image are un-
known. An estimation result that is restored informa-
tion tracks of expanded input image vector are written
as:

ζ̂ = E(ET ΣE)−1ET ζ′ (9)

where

Σ = diag(

M︷ ︸︸ ︷
1, . . . , 1,

3w︷ ︸︸ ︷
0, . . . , 0) (10)

is a diagonal matrix shown lacking element’s position.
If we describe the eigen vectors as block matrix

E = [ET
I , ET

O1
, ET

O2
, ET

O3
]T , (11)

information track of parameter θj is directly calculated
by

η̂j = EOj(ET
I EI)−1ET

I χ′. (12)

Figure 1: Learning samples.

2.3 Parameter Estimation

We can consider many kind of description formats of
information tracks. However, as the information track
description, we adopted sine wave

yji = K cos
(

2π

w
(i− 1)− θj

)
+C, i = 1, . . . , w (13)

where K, C are constants. The values θj were ex-
pressed with the phase of the each sine wave because
it can express periodicity such as rotation angle. Fur-
thermore, the information track that restored by the
BPLP method becomes a sine wave in this description
at any input image, and we can detect a phase by the
inner products of cos and sin vectors

ωc =
[
cos 0, cos( 2π

w ), . . . , cos( 2(w−1)π
w )

]
(14)

ωs =
[
sin 0, sin(2π

w ), . . . , sin(2(w−1)π
w )

]
(15)

without fourier transformation easily. Inner products
with information track that restored by BPLP method
are [

cj

sj

]
=

[
ωc

T

ωs
T

]
η̂j ≡

[
Ωc

T
j

Ωs
T
j

]
χ (16)

where[
Ωc

T
j

Ωs
T
j

]
=

[
ωc

T

ωs
T

]
EOj(ET

I EI)−1EI . (17)

Therefore, cj and sj are able to calculate from only
each inner product of Ωc

T
j χ or Ωs

T
j χ . Then, we get

the phase of the information tracks that mean the pa-
rameters of the object by

θ̂j = tan−1

(
sj

cj

)
. (18)

These vectors Ωcj and Ωsj can be expressed also as
images, and we call these vectors EbC image pair.

3 Experimental Results

3.1 EbC Image Pair Generation

The EbC method has a learning process and gen-
erates EbC image pair before parameter estimation
process. Columbia Object Image Library (COIL-20)[9]
that is 128 × 128 pixels gray scale image library of 20
objects and we used one object of this library shown
in figure 1 for the experiment. For experiment, we
set up parameters of estimation for 3DOFs of rota-
tion vertical axis of the object, translation of vertical
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Ωc1 Ωc2 Ωc3

Ωs1 Ωs2 Ωs3

Figure 2: EbC image pairs (Δv = 4).

Δv M D Comp. time
12 324 131 19sec.
6 900 252 2min. 18sec.
4 1764 337 8min. 46sec.
3 2916 388 23min. 14sec.

Table 1: The results of computational times at number
of samples M , Eigenspace dimension D.

axis and horizontal axis of the image plane. The im-
age variations of this parameter are given by original
COIL-20 library, and we generate images for the vari-
ation of translation beforehand. Furthermore, the im-
age variations of the vertical axis rotation are given by
72 pieces and we used 36 samples of the rotation angle
Rθ = 0, 10, . . . , 350[deg] for learning and used the other
samples Rθ = 5, 15, . . . , 355[deg] for accuracy evalua-
tion of proposed method. That means we used separate
samples for the evaluation. The EbC image pairs for
Rθ and vx, vy were computed at the translation unit
width Δv = 12, 6, 4, 3 [pixel], with the range of −12 ≤
vx ≤ 12 and −12 ≤ vy ≤ 12. Therefore, the number of
learning samples M = 36 × 3 × 3 = 324 in Δv = 12,
because of vx = −12, 0, 12 and vy = −12, 0, 12. Fig-
ure 2 shows a sample of the EbC image pairs where
Δv = 4, K = 127, C = 127, and we encoded phases θj

of information tracks by

θ1 = Rθ, θ2 = π
vx

24
, θ3 = π

vy

24
. (19)

The dimension of eigen space was set by cumulative
proportion ratio of 99.0%. The table is 1 shows the
number of sample images M , eigenspace dimension E
and computational time with the linux computer 3.0
GHz CPU.

3.2 Parameter Estimation Results

For the pose estimation, we gave a displacement
to 36 sample images that not used for the learn-
ing by pixel-by-pixel movement in the range of
−12 ≤ vx ≤ 12 and −12 ≤ vy ≤ 12 as shown in Figure
3. Therefore, when we generate EbC image pair by
Δv = 12, if we set the displacements to (vx, vy) =
(−12,−12), (−11,−12), . . . , (0, 0), . . . , (+12,+12),
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Figure 3: Set up values of translation
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Figure 4: Pose estimation results

these displacements are matching with learning sam-
ples. However, the parameters are estimated from
the interpolation of learning samples at all conditions
because we use separate test images. The examples
of pose parameter estimation are shown in figure 4
where the given rotational angles for the input images
are Rθ = 60, 230[deg]. The computational time of all
parameters (Rθ and vx, vy) was 533[μsec] for each
input image with the linux computer 3.0 GHz CPU.
Horizontal axes of figure 4 are trial numbers of input
image for parameter estimation and displacement
shown in figure 3 was given to each input image. From
these results, we can confirm the estimation results of
pose angle are approaching to the true value by the
smaller step width as a general trend. However, there
is no difference between Δv = 4 and Δv = 3 because
the densities of learning samples in these conditions
were almost saturated. Therefore, we estimate it is a
limit of proposed method at given samples.

The parameter estimation error in other objects in
the COIL-20 is shown in figure 5. These results show
the estimation error of posture angle (horizontal axis
of the figure.) and average of displacements (verti-
cal axis of the figure.) of each object of all estima-
tion at Δv = 3. From these results, it is supposed
to the estimation error of objects near cylinder shape
are rather small, and the other objects those change
contour shapes significantly with rotation are big. We
would like to make clear about this relation in the fu-
ture works.

4 Discussions

4.1 Dimensionality of the eigenspace

Generally, the accuracy is in trend of drop with lower
dimension eigenspace. However, it is not always true.
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Δv 12 6 4 3
Rθ [deg] 24.8 7.76 5.86 5.31
vx [pixel] 1.11 0.833 0.692 0.696
vy [pixel] 1.53 0.724 0.490 0.450

Table 2: The average of pose angle and translation
estimation accuracy.
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Figure 5: The estimation error of other objects.

Because it has a property of curse-of-dimension, so it
is not a better choice to use eigenspace of the higher
dimension. The parameter estimation process of EbC
method was integrated to EbC image pairs, but these
image pairs are meaning eigenspace projection and pa-
rameter space projection. Therefore, the EbC method
has a problem the decision of the eigenspace dimension
and it affects to the accuracy of parameter estimation.

Figure 6 shows a relation between posture or
displacement estimation error vs dimension of the
eigenspace. These vertical axes are parameter estima-
tion error of posture angle and displacement, horizontal
axes are dimension of the eigen space, and these results
were calculated from 625 test images that generated by
pixel-by-pixel movement in the range of −12 ≤ vx ≤ 12
and −12 ≤ vy ≤ 12 . In these results, we used odd-
number images of COIL-20 object 4 for learning, and
used even-number images for test to evaluate the gen-
eralization performance.

When we generate EbC image pair from all eigen
vectors, the calculation by proposed method is inter-
changeable with Okatani’s method, but it is appar-
ent that its case is not best from the figure 6. The
eigenspace of 30 to 40 dimension are better suited for
parameter estimations and estimation errors are small.
Because the generalization by the eigenspace is effec-
tive for this parameter estimation problem. We expect
that to use of higher dimensional eigenspace make big
estimation errors when irrelevance components to esti-
mate parameters are included to learning samples be-
cause these samples make effect on higher dimensional
eigenvectors. We wish to solve about this relation and
consider the decision method of the eigenspace dimen-
sion in the future work.

4.2 Number of images for learning

The number of samples M is important for practi-
cal situations because taking many images for learning
is very difficult in general. As a simulation, we show
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(a) posture estimation error.
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Figure 6: RMSE of estimated translations

the performance of estimation when the number of im-
ages increases more than 10,000[3]. However, usually
we have to perform estimation with relatively small
number of sample images.

Figure 7 show errors in estimates as M changes.
This experiments estimate just 1DOF rotation angle
Rθ, therefore the maximum number of images is 72.
The horizontal axis is M = 72, 36, 24, 18, 12, 9, 8, 6, 4, 3
where the samples are taken at evenly spaced view an-
gles, and the vertical axis is RMSE of estimated angles.
No dimensionality reduction of the eigenspace is ap-
plied. From the figures, at least 12 samples are needed
for all of these cases to achieve reasonable error less
than 5 degrees.

Clearly, we can see three types of objects. Figure
7(a) shows the first type. As we expected, small train-
ing images lead to large errors. Figure 7(b) shows the
second type. Objects in this type keep errors less than
15 degrees even for only three training images. The
last type is shown in Figure 7(c). This type behaves
strangely that errors for more training images show
larger error than for small training images. This types
are further investigated as future work.

4.3 Accuracy for estimating 3DOF rota-
tion

It is interesting to apply the proposed method to
estimation of 3DOF rotation. This is the case usually
called 3DOF pose estimation, and it requires to repre-
sent 3D pose with a 3× 3 rotation matrix, whereas the
experiment above used an angle and two translations.

3DOF rotation requires a large number of samples
much more than 1DOF rotation. Therefore, we used
2000 synthesized images of a 3D model [11] as train-
ing images. Then, we used 100 image for evaluation.
3DOF poses of both training and test images were re-
stricted to be less than 30 degrees as a rotation angle of
the exponential map[5] (rotation axes were randomly
chosen). We had the average error of estimate angles
of 2.26± 2.07 degrees (again this is a rotation angle).

However, estimation of fully random 3DOF pose is
difficult to achieve a reasonable estimation less than
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(a)

(b)

(c)

Figure 7: Results for different M . RMSEs are shown
for (a) object 4, (b) object 15, and (c) object 5 in
COIL-20.

20 degrees. We think that the use of kernelized BPLP
[1] would overcome this limitation of linear property of
the proposed method.

5 Conclusion

In this paper, the EbC method for estimating the
postures and displacements parameters of a three-
dimensional object at high speed from a input im-
age was described. The EbC method introduced the
concept of the information track to an image into the
parameter estimation method of the appearance base,
and parameter estimation was realized from the infor-
mation track restoration by using the image interpola-
tion by the BPLP method. All these information track
restoration processes were expressed by the EbC image
pair, and parameter estimation was realized by inner
product operation and arctangent calculation. As a fu-
ture work, we continue to research a relationship about
the number of learning samples, degree of freedom and
dimension of information tracks. And also, we con-
sider a modest calculation of the EbC image pair for
multiple degree of freedom.
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