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Abstract

A novel method for image template matching which
gives robust results for various disturbances in the real
world, including local and/or global variations of illu-
mination, occlusions, and noises, is proposed. The au-
thors de�ned the similarity index from the set of pixel
pairs with distinct intensity-di�erence in the given tem-
plate image. The ’distinctness’ is de�ned from the sta-
tistical view point. The authors develop the mathemat-
ical model of the inverting-ratio, which is the quan-
tity strongly related to the similarity index, for the
Gaussian-disturbances. The authors also veri�ed the
model by numerical experiments. The mathematical
model, enforced by the numerical results, gives the the-
oretical backbone for the robustness of the proposed
method.

1 Introduction

The image template matching techniques, which
give the criterion of similarity of two images, are the
most fundamental pattern recognition method, and
also wide-applied core technologies in the industry
e.g. appearance inspection. In application of template
matching, sometimes following properties are needed:

• robust matching for occlusion e.g. by gloss
• robust matching for local and/or global illumina-
tion variation

• robust matching for various random noises

In this paper, we will develop the Statistical Reach Fea-
ture (SRF)method of the template matching, as an an-
swer to these requirements. The key idea of the method
is very simple : roughly speaking, for a given pair of
points, two signs of intensity-di�erences, one from the
�rst image, and the other from the second image, tend
to coincide if the two given images are su�ciently sim-
ilar and the absolute value of the di�erence taken from
one of the images is su�ciently large.
Like SRF, some of existing methods of template

matching use the intensity-based information. Above
those, we mention SSD(s
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orrelation) [3]. SSD uses the cri-

terion based on the sum of squared di�erence of the in-
tensity of the given images and provides fast matching.

However, it is well known to fail for the illumination
variation and the occlusion, even for rather weak ones.
CC uses the criterion based on the normalized cross
correlation of the intensity of the given images. This
method is robust under the noise and the uniform vari-
ation of illumination. However, this method is weak for
the local variation of illumination and occlusion. ISC
uses the vector of Boolean values which corresponds
to the sign of the di�erence of the intensity of right-
adjacent pixels of the given image. The criterion of
ISC is correlation coe�cient of the Boolean value vec-
tors made from the given two images. This method
is robust for local and/or global variation of illumi-
nation, noise, and occlusion. Some improvements for
this method are proposed, e.g.[4]. However, the meth-
ods based on ISC are weak especially for the regions
with low mean-contrast, because the robustness of the
methods depend on the intensity-di�erence of adjacent
pixels.
SRF is a method to extract noise-robust feature

from the given image, by sign of the intensity-di�erence
of the selected pixel-pairs of the images. The selec-
tion of the pairs is done by a statistical criterion. SRF
method is already applied to background subtraction
[6] and showed the high performance for the subject. In
this paper, we show SRF template matching provides
the robust matching for illumination variation, random
(e.g. Gaussian) noise, and other various disturbances.
The authors also performed the experimental compar-
ison with CC and ISC, which shows the superiority of
the SRF template matching over CC and ISC.
This paper is organized as follows. In section 2, the

de�nition of the similarity index is given. In section
3, we show the experimental results, in the real-world
images with various disturbance, including illumina-
tion variation and partial-occlusion. In Section 4, we
develop the mathematical model of the statistical be-
havior of inverting ratio and examine it numerically.
In section 5, we give the concluding remarks.

2 Template Matching by SRF Method

2.1 The De�nition Of Similarity Index

Now we show the de�nition of the similarity index
c(I,J) of given pair of same-sized images I and J .
Suppose the size of input images are of W×H. By grid
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�, we mean a set of the coordinates of pixels in image
I (and hence J). Namely,

� := {(i, j) | i = 0, . . . ,W � 1, j = 0, . . . , H }. (1)
In what follows, we regard the images of size W×H
as the intensity function de�ned on �. For arbitrary
pair (p, q) of grid-points in �, we de�ne the value
srf(pÂq ;TP ) as follows:

srf(pÂq ;TP ) :=
(
1 I(p)� I(q) � TP ,
0 I(p)� I(q) � �TP ,
� otherwise.

(2)

Here, TP (> 0) is the threshold of intensity di�erence.
For the role and how to set the value, see next sub-
section. We call the grid-point pair (p, q) the reach,
if srf(p Â q ;TP ) 6= �. In the following, we write
srf(p Â q) rather to srf(p Â q ;TP ), unless there is
any confusion. For the given reach � = (x,y), we
call the grid-point x and y arising point of � and end
point of �, respectively. The length k(x,y)k of a reach
(x,y) = ((i1, j1), (i2, j2)) is de�ned as Chebychev (or
chess board) distance as follows:

k(x,y)k := max{ |i1 � i2|, |j1 � j2| }. (3)

By the local reach graph RGloc(p; I, TP , TD), we mean
the set of reaches which arises from the given grid-point
p � � with length � TD. Namely,

RGloc(p; I, TP , TD) :=

{(p,y) � �×� | srf(pÂy) 6= �, k(p,y)k � TD }.
Note that RGloc is possibly nullset. The role of the
threshold TD and how to set it is explained in the next
subsection. So far, we treated only image I. Now we
de�ne the incremental sign b(p Â q) for image J as
follows:

b(pÂq) :=
½
1 J(p) � J(q),
0 otherwise.

(4)

For a grid-point p � V (I, TP , TD), r(p,J) is de�ned as
follows:

r(p,J) :=

|{(x,y) � RGloc(p) | srf(xÂy) = b(xÂy)}|
|RGloc(p)| .

(5)

Here, RGloc(p) above is just the abbreviation of
RGloc(p; I, TP , TD). The local similarity cloc(p,J) is
de�ned as follows:

cloc(p,J) :=

½
1 r(p,J) � TB ,
0 otherwise.

(6)

Here, the value TB � [0, 1] is the threshold. The role
of threshold TB and how to set it is explained in the
next subsection. We de�ne V (I, TP , TD) to be the set
of arising points of reaches in image I. Namely,

V (I, TP , TD) := {p � � |RGloc(p; I, TP , TD) 6= �} .
(7)

The similarity coe�cient c(I,J) is de�ned as follows:

c(I,J) :=

P
p�V (I,TP ,TD) cloc(p,J)

|V (I, TP , TD)| . (8)

Figure 1: The e�ect of TB .

2.2 The Roles and Selection of Thresholds

Now we explain the threshold TP . Suppose the two
images I and J is given to be similar (in intuitive
sense). Then, we can assume as if the image J is gen-
erated from the image I by adding a noise with some
(unknown, generally) probability model. Then, from
the elementary probability argument, we know that if
a pair of grid-points has su�ciently large (in absolute
value) intensity di�erence in the image I, the sign of
the di�erence is highly expected to coincide with that
of the grid-point pair in the image J . So, if we take
TP > 2�, where � is the SD of the noise, the inverting
ratio which is de�ned as the probability of discrepancy
between srf(p Â q ;TP ) and b(p Â q), shall be low.
For the quantitative treatment of inverting ratio, see
section 4. In general, the bigger we set TP , the fewer
reaches we obtain, which causes the unstable matching
by the over quantization of similarity indeces.
Next we explain the threshold TD. Since the local

correlation cloc(p,J) at the given grid-point p is deter-
mined by the reaches which arise at p and the reaches
are chosen to be of length � TD, the magnitude of
TD determines the rate of contribution of low spatial-
frequency components of the given image pair. Hence,
the threshold TD should be chosen in consultation with
the level of detail of the given images. In what follows,
we always use TD = 1 for the simplicity of the argu-
ments.
Now we explain about threshold TB in the de�nition

of the local similarity. Let us consider the probability
that Pr(cloc(p,J) = 1), provided we have eight reaches
for the given p � I. The graph of Fig.1 shows the
the relationship between the constant inverting ratio
X and Pr(cloc(p,J) = 1), for TB = 1/8 to TB = 7/8.
Except both extreme cases, each curve is sigmoid and
we see Pr(cloc(p,J) = 1) � X if X is su�ciently large
or small, respectively. In the caseX = 0.5 which means
locally uncorrelated case, the correspoinding Y value
is < 0.5 if TB � 5/8. Hence, when we set TB � 5/8,
the contribution of the locally uncorrelated point to
c(I,J) is stochastically low. When TB = 7/8, the most
part of the corresponding curve is below the line Y =
X, which means c(I,J) does not goes high even non-
inverting ratios is rather high. We used TB = 6/8 for
every experiment in the following.
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Figure 2: Experiment (stamp).

3 Experiments

3.1 Experiment�Stamp�

Fig.2 shows the experimental results which demon-
strate the di�erence of the features among ISC, CC and
SRF. The template image is cut out from the source im-
age. The matching target image is obtained by adding
arti�cial occlusion and Gaussian noise with mean=0
and SD=5 to source image. The arti�cial occlusion is
managed to cut in the region which has the high sim-
ilarity with the template image. In this experiment,
ISC fails in the template matching, though it is known
to be robust for the variations of illumination and oc-
clusions. The reason of the failure comes from the low
contrast of the target image. The failure of CC comes
from the occlusion. On the other hand, SRF showed
the good results, which shows the e�ectiveness of the
selection mechanism of noise-robust point pairs.

3.2 Experiment (Food Label)

Next, we performed the experiment in the harder
situation. The source image of the target is the picture
of a glossy food label, which has the highlight occlu-
sion caused by mal-illumination. The target image for
matching is generated by adding Gaussian noise with
mean=0 and SD=38. The template image (100×35)
for matching was prepared not to have highlight oc-
clusion. The assumed situation for this experiment:
handling a large number of labels in a short time. In
this situation, high-speed shuttering is needed, which
brings on the low SNR image input, caused by poor
light intensity and large gain. But, the e�ort of inten-
sity compensation by high-intensity illumination causes
the strong highlight occlusion for the input images. So,
we must make it for the noise-rich inputs.
Fig.3 shows the experimental results for SRF, CC,

and ISC. The thresholds for the SRF are : TP =
50, TD = 1, and TB = 0.75. With this threshold, we
obtained 1,824 reaches from the template. Both CC
and ISC failed by disturbances and SRF provides suc-
cessful matching, regardless of the disturbances such as
noise and highlights in the target image. Fig.4 shows
the correlation map of CC(a), ISC(b), and the similar-
ity index map of SRF(c), respectively. The correlation

Figure 3: Experiment (food label).

map of CC has so many nearing local maxima. The
correlation map of ISC is narrow-ranged and it is hard
to �nd the maximum poit. The similarity index map
of SRF, on the other hand, has sharp spike with over-
whelming magnitude, which provides clear maximum
across the whole similarity index map.

4 The Statistical Analysis of Similarity
Index

In this section, we develop the mathematical model
of inverting ratio, because from the de�nition, it is
strongly related to the similarity index and we can ex-
pect the model to pro�le the rough behavior of the in-
dex. In what follows, we render the theoretical invert-
ing ratio with some assumptions. Suppose the template
image I is generated from N(�, �2) and the target im-
age J from I by adding the noise N(0, �2). Fix p, q
in the grid and let � be the set of all 4-tuples of value
(I(p), I(q),J(p),J(q)) such that |I(p)� I(q)| � TP .
The set � is assumed to be the event srf(pÂ q) 6= �.
Let N to be the sub-event srf(p Â q) 6= b(p Â q).
The inverting ratio rinv is now formulated as the value
Pr(N). Now we split � into two sub-event:

�+ := {(x , y , x0, y0) � � | x� y � TP },
and

�� := {(x , y , x0, y0) � � | x� y � �TP }.
Since � = �+ � �� and �+ � �� = �, rinv =
Pr(N |�+) Pr(�+) + Pr(N |��) Pr(��). The symme-
tries of the distributions for the generation of the im-
ages lead us Pr(�+) = Pr(��) = 0.5 and Pr(N |�+) =
Pr(N |��). Hence, now we have rinv = Pr(N |�+).
Now we split the event �+ into small pieces like �+ =S
k>TP

�+k , where

�+k := {(x , y , x0, y0) � �+ | x� y = k}.
Now then, we have

rinv = Pr(N |�+) =
X
k�TP

Pr(N |�+k ) Pr(�+k |�+).

(9)

Since I(p) � I(q) = k, we know that J(p) � J(q)
follows N(k, 2�2), and that

Pr(N |�+k ) =
1�
� 2�

Z �k

��
exp

μ
� u2

4�2

¶
du =

1

2
erfc
³
k

2�

´
.

(10)
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Figure 4: The correlation maps and the similarity map.

The probability Pr(�+k |�+) is given by:

Pr(�+k |�+) =
R k+1
k

exp
³
� u2

4�2

´
duR�

TP
exp

¡� v2

4�2

¢
dv

=
erfc

¡
k
2�

¢� erfc ¡k+12� ¢
erfc

¡
TP
2�

¢ . (11)

Combining (9), (10) and (11), we obtain:

rinv = Pr(N |�+)

=
1

2

X
k�TP

erfc

μ
k

2�

¶Ã
erfc

¡
k
2�

¢� erfc ¡k+12� ¢
erfc

¡
TP
2�

¢
!

(12)

; 1

2� erfc
¡
TP
2�

¢�
�

Z �

TP

erfc

μ
k

2�

¶
exp

μ
� k2

4�2

¶
dk.

(13)

Before the last expression, we introduced two approxi-
mations: �rst, replaced the di�erence by its derivative,
and, secondly, replaced the summation by an integrala-
tion. Fig.5 shows the non-inverting ratio to SD of the

Figure 5: Non-inverting ratio to added noise SD.

added noise, with the constraint TP = 2�, for both
approximating expression (13) and experimental plots.
The plots perform quite good �ts to the theoretical
line. The exact form (12) of rinv leads us its major
estimate : 1

2 erfc
¡
TP
2�

¢
. When we take TP = 2�, the

upper bound of rinv is nearly 0.079. Fig.5 also shows
the non-inverting ratio of ISC. Compared to ISC, the
non-inverting ratios of SRF are kept high even for hard
noises, and this fact is the source of superiority of SRF
over ISC.

5 Conclusion

We have proposed the novel method for noise-robust
template matching technique. The proposed method is
shown to be robust, under the strong noise, occlusions
including highlights. We also showed the experimental
superiority of the method over some of the existing
techniques, namely CC and ISC. We also developed
the mathematical model for the inverting ratio, and
revealed its relationship to the noise.
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