
Unsupervised Abnormal Behavior Detection for Real-time
Surveillance Using Observed History

Tsz-Ho Yu
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
thyu@cse.cuhk.edu.hk

Yiu-Sang Moon
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
ysmoon@cse.cuhk.edu.hk

Abstract

This paper presents a novel method of utilizing observed
history for detecting abnormal behaviors in surveillance
applications. An unsupervised algorithm is proposed to
detect abnormal behaviors and re-train itself in real-time.
Motion vectors of objects are estimated using the optical
flow method. Encoded feature vectors are stored in an ob-
servation matrix, abnormal behaviors can be detected by
applying principal copmonent analysis (PCA) on the ma-
trix. This method has been evaluated under both indoor and
outdoor surveillance scenarios. It demonstrates promising
results that this detection procedure is able to discover ab-
normal behaviors and adapt to changes in the behavioral
patterns incrementally.

1 Introduction

Discovering abnormal behaviors is the key step for many
computer vision applications, especially for smart visual
surveillance. Although human action recognition has at-
tracted much attention recently, some issues remain largely
unsolved for a deployable surveillance system. First, ab-
normal behaviors are difficult to be defined formally[9]. A
suspicious behavior in one scene can be regarded as nor-
mal in another environments. In spite of this, many of the
current approaches rely on supervised learning methods,
the “abnormal behaviors” are required to be well-defined
in a labeled data set for training. These approaches are
not feasible in realistic surveillance, when the definition
of “unusual behaviors” changes with the environments. In
addition, some algorithms rely on detection of local fea-
tures, such as the shape of object contours [7, 8]. These
approaches acheieve high performances when foreground
objects can be extracted accurately. However, the back-
ground subtraction algorithm is affected by occlusions or
clutter background. Moreover, many techniques on unusual
behavior detection cannot perform in real-time, as they re-
quire the complete video for modeling the abnormal behav-
iors [9, 7, 3]. Hence, these methods cannot respond im-
mediately to control the tracking cameras, or to notify the
human operator about the abnormal behavior detected.

The major contribution of our work is to design a method
for detecting unusual behavior in real-time. Viewing the
problem from a different perspective, the proposed method
emphasizes on using observed history as reference data.
Without using a fixed labeled data set, this method is ca-
pable to update itself incrementally, adapting to changes of
behavioral patterns in the surveillance environment.

The rest of the paper is structured as follows: Section 2
explains the feature extraction procedure using pyramidal
Lucas-Kanade algorithm. Section 3 describes the abnormal

behavior detection and localization methodologies. Exper-
iments have been performed to justify the feasibility of our
proposed method; the results are reported in section 4. Fi-
nally, section 5 outlines our conclusion.

2 Feature Extraction

2.1 Motion Detection Using Optical Flow

Surveillance videos captured from the cameras are first
preprocessed to undergo foregorund-background segmenta-
tion. Foreground pixels are extracted by applying the Mix-
ture of Gaussian method[6]. Subsequently, isolated fore-
ground and noise pixels are deleted by morphological open-
ing operators[2]. Features of objects’ movements are ex-
tracted by computing the dense optical flow field from the
video. The optical flow approach is employed because it
only requires two consecutive frames for estimating the mo-
tion, thus new features can be extracted from every frame.
As described in figure 1, the feature points in background
regions are masked by the foreground pixel mask, such that
the noises introduced by flow vectors on background can be
reduced.

Figure 1: Feature points of optical flow are masked by the
foreground regions.

Since traditional Lucas-Kanade method[4] assumes
small and constant movements, it is not feasible in detecting
fast movements. Addressing this problem, the pyramidal
version of Lucas-Kanade method[1] is adopted. An image
pyramid is constructed, such that larger flow vectors can be
estimated more accurately. Figure 2 shows some examples
of flow vectors extracted from the videos.

2.2 Running Flow Histograms

As a result of the optical flow algorithm, flow vectors are
obtained from the masked feature points. The set of all J
flow vectors in the i-th frame Fi is represented in (1):

Fi = {fi1, fi2, ..., fij , ..., fiJ}
fij = [Xij , Yij , θij , Sij],

(1)

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN5-5

166

Figure 2: Flow vectors obtained from the pyramidal Lucas-
Kanade algorithm

where the coordinate (Xij ,Yij) denotes the location of the
feature point; θij and Sij represent the orientation and veoc-
ity of the corresponding flow vector respectively. A two
dimensional flow histogram is constructed for each frame,
with respect to the values of θ and S of the flow vectors.
The vectors in the same frame are grouped into Nv × Nθ

bins, according to the velocity and orientation respectively.
A flow histogram summarizes the dynamic characteristics
in the scene at a particular moment. Figure 3 visualizes the
structure of a flow histogram.

Figure 3: The structure of a flow histogram

In the proposed method, an event is represented by in-
tegrating individual flow histograms from the observed his-
tory. Assuming 0 ≤ v < Nv and 0 ≤ θ < Nθ, the Running
Flow Histogram(RFH) of the i-th frame h′i(θ, v) is calcu-
lated in (3).

h′ni(θ, v) = Normalize(h′i(θ, v)) (2)

h′′i (θ, v) = αh × h′ni(θ, v) + (1− αh)× h′′i−1(θ, v) (3)

A running flow histogram is actually the weighted running
average of the normalized flow histogram from previous
observations. The learning rate parameter αh controls the
length of the event represented by the running flow his-
togram. When a frame is captured from the security camera,
a new RFH is computed from the current histogram and the
RFH in the previous frame. After that, for analyzing the
recorded events by PCA in the learning process, each RFH
is reshaped into a feature vector h(θ ∗Nv + v), as shown in
(4).

hi(θ ∗Nv + v) = h′′i (θ, v). (4)

The feasibility of using flow histograms in representing
scene features is justified in figure 4: Similar events in the
scene demonstrate high correlations in their RFHs; on the
contrary, a large difference between two RFHs implies the
events are not similar.

3 Unsupervised Detection

As discussed in section 1, the main characteristic of our
method is to detect abnormal behaviors by referencing the
observed history, instead of training a classifier from a la-
bel training set. The underlying concept is based on the
correlations between similar events. Usually, normal be-
haviors occur frequently, hence a large amount of similar

Figure 4: Top row and middle row: the scenes and their
corresponding RFHs of similar behaviors. Bottom row: the
scene and RFH of an abnormal behavior. Interestingly, sim-
ilar events possess high correlations between their RFHs

RFHs are recorded. Consequently, the distributions of the
observed RFHs concentrate over several specific ranges. On
the contrary, abnormal behaviors are rare; thus the RFHs of
abnormal events are scattered and isolated from the major
distributions. Leveraging the high correlations between nor-
mal behaviors, frames with abnormal behaviors can be dis-
covered by detecting the outliers from a set of previously
observed RFHs. A behavior is classified as abnormal if it
shows a large deviation from the recorded events in the his-
tory. To facilitate the unsupervised detection process, an ob-
servation matrix is used to store the RFHs of the observed
history.

3.1 Observation Matrix

The observation matrix is implemented using a circular
linked-list; the structure of this linked-list is illustrated in
Figure 5. Assume the observation linked-list contains at
most L entries, the observation matrix H has a size of L×
Nd ∗ Nv . The matrix is initialized by the RFHs computed
from the first L frames, as described in (5).

H = [h1 h2 h3 ... hL] . (5)

The list adopts a “first in, first out” (FIFO) updating policy:
When a new frame is acquired from the camera, its RFH
replaces the oldest column in the behavior matrix. In a long
run, old observations are gradually replaced by the more
recent ones; the feature vectors inside the matrix change
incrementally. Since the detection criteria is detemrined by
the observed history stored in the observation matrix, the
classifier can be adjusted dynamically.

3.2 Detecting Abnormal Behavior

Eigenvectors and eigenvalues of the observation matrix
are computed using PCA[5]. This detection process at-
tempts to reconstruct the information of the current frame
using the eigenvectors of the observation matrix. Abnor-
mal behaviors can be detected by measuring the complete-
ness of the reconstruction process. For the mean-subtracted

observed matrix H , the covariance matrix C is computed

167

Figure 5: An observation matrix implemented by a circular
linked-buffer

using the outer product of H . Afterwards, the matrix of
eigenvectors V and diagonal matrix of eigenvalues E can
be calculated by solving (6):

V −1CV = E. (6)

The eigenvectors are sorted by their corresponding eigen-
values in descending order. The first L′ eigenvectors are se-
lected to a matrix V ′ for abnormal behavior detection. Sub-
sequently, the current RFH is reconstructed into hr

i by eigen
projections in (7).

Projection: hi = (hi −H) ∗ V ′T

Back-projection: hr
i = hi ∗ V ′ + H. (7)

Abnormal behaviors are distinguished by measuring how
much information can be recovered by using the principal
components obtained from the observation matrix. Since an
unusual behavior does not have high correlations with the
normal behaviors in the history, its RFH cannot be recon-
structed easily. By leveraging this property, the recovered
energy ratio ER indicates the presence of unusual behavior
in the current frame, as defined in (8):

ER =

Nθ∗Nv−1∑

n=0

(hr
i [n])2

Nθ∗Nv−1∑

n=0

(hi[n])2
× 100% (8)

From (9), abnormal behavior(s) is detected in a frame when
the recovery energy ratio ER is smaller than a pre-defined
threshold threshr1. This threshold determines the overall
sensitivity of the detection process.

ER ≤ threshr1 (9)

3.3 Abnormal Behavior Localization

Abnormal behaviors are localized by analyzing back-
projected RFH. For the i-th frame, the absolute difference
between the original and back-projected RFHs is computed.
Weighted factors Wi assigned to each of the bins, as de-
scribed in (10).

Wi(θ ∗Nv +v) = |hr
i (θ ∗Nv +v)−hi(θ ∗Nv +v)|. (10)

Wi represents the anomaly of a flow vector at the i-th
frame, a large value in Wi indicates that flow vectors can-
not be recovered by PCA efficiently. The anomaly weights
Wi(d ∗ Nv + v) are assigned to all flow vectors in the
scene, according to its corresponding bin in hi. Blob
analysis is performed to detect the connected components
[B0...Bji...BMi] from the foreground regions. For each

connected component, its average “anomally” A can be cal-
culated from the sum of all weights that assigned to the vec-
tors over the region’s area.

A(B) =

∑

F∈B

Wi

AREA(B)
. (11)

Hence, an object’s behavior can be classified as abnormal if
it’s average anomally is greater than the threshold threshr2:

A(B) ≥ threshr2 (12)

4 Evaluation

4.1 Experiment Setup

To justify the effectiveness of the proposed approach,
several experiments were conducted in real-life surveillance
conditions. Security cameras were installed in three differ-
ent surveillance scenarios. The first security camera was
mounted in an outdoor environment, so as to evaluate the
performance under varying illumination. The second secu-
rity camera was installed on at the end of a corridor, sim-
ulating the arrangement of a realistic closed-circuit televi-
sion (CCTV) system. At one side of the corridor, there was
a control room; whereas most of the people passed by the
corridor, only a few people entered the room. The third se-
curity was mounted in the laboratory; fast abnormal actions
were performed in front of the camera, in order to evalu-
ate the response time of the proposed system. Abnormal
events were counted manually in the surveillance videos,
a successful detection was defined by the action that was
detected by both the proposed method and manual obser-
vation. The number of false positive detection were also
recorded.

4.2 Evaluation Results

The evaluation results are summarized in Table 1. The
proposed detection method shows promising results. With-
out using any explicit training data, our method detects ab-
normal events automatically with a high detection rate. In
addition, the detection algorithm is capable to perform in
real-time and issue timely responses when abnormal be-
haviors are detected. Moreover, the detection algorithm is
able to learn incrementally; the classification criteria can
be adjusted according to changes in the surveillance envi-
ronment. The proposed algorithm is robust against occlu-
sions and segmentation errors. However, some of the false
positive detections were recorded. Most of the false posi-
tive cases were produced at the beginning of the operation,
when not enough examples were learned from the history.
Figure 6 shows some of the detection results obtained from
the experiments.

5 Conclusion

An innovative method for abnormal behavior detection
is presented in this paper. We have designed a unsupervised
learning method for discovering abnormal movements for
visual surveillance applications. Without using a labeled
data set, the detector updates itself incrementally by learn-
ing the behavioral patterns from previous observations. Ap-
plying PCA on the observation matrix, this method is able to
detect abnormal behaviors in real-time. The evaluation re-
sults are promising: it is able to detect abnormal behaviors
accurately without any training data; it also updates itself
incrementally and conforms to the changes in environment.

168

Scenario Length No. of Abnormal Successful Detection Rate No. of False
Behaviors Detection (Detected/No. of Abnormal Behavior) Positives

Outdoor 333 seconds @ 15fps 11 10 90.9% 4
Corridor 333 seconds @ 30fps 17 16 94.1% 6

Laboratory 150 seconds @ 30fps 7 6 85.7% 2

Table 1: Experimental results of the proposed abnormal behavior detection algorithm

Figure 6: Sample detection results

Acknowledgement

The work described in this paper was substantially sup-
ported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project
No. 415207).

References

[1] J. Y. Bouguet. Pyramidal implementation of the lucas kanade
feature tracker: Description of the algorithm, 2002.

[2] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[3] Y. Li, C. Xu, J. Liu, and X. Tang. Detecting irregularity in
videos using kernel estimation and kd trees. In MULTIME-
DIA ’06: Proceedings of the 14th annual ACM international
conference on Multimedia, pages 639–642, New York, NY,
USA, 2006. ACM.

[4] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI81,

pages 674–679, 1981.
[5] J. Shlens. A tutorial on principal component analysis, Decem-

ber 2005.
[6] C. Stauffer and W. Grimson. Adaptive background mixture

models for real-time tracking. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, 2:2246,
1999.

[7] X. Wu, Y. Ou, H. Qian, and Y. Xu. A detection system for
human abnormal behavior. Intelligent Robots and Systems,
2005. (IROS 2005). 2005 IEEE/RSJ International Conference
on, pages 1204–1208, Aug. 2005.

[8] T. Xiang and S. Gong. Video behavior profiling for anomaly
detection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(5):893–908, May 2008.

[9] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity
in video. Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, 2:II–819–II–826 Vol.2, June-2 July 2004.

169

