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Abstract

This paper presents PrBPRRC (Probabilistic Bi-
polar Radial Reach Correlation), a change detection
method that is robust against illumination changes and
background movements. Most of the traditional change
detection methods are robust against either illumina-
tion changes or background movements; BPRRC s
one of the illumination-robust change detection meth-
ods. We introduce a probabilistic background texture
model into BPRRC and add the robustness against
background movements and foreground invasions such
as moving cars, walking pedestrians, swaying trees ,
and falling snow. We show the superiority of our
PrBPRRC under the environment with illumination
changes and background movements by using public
datasets: ATON Highway data, Karlsruhe traffic se-
quence data, and PETS 2007 data.

1 Introduction

Amid rising concerns about security, surveillance
systems have become a focus of attention in recent
years. To realize practical surveillance systems, ro-
bust change detection for preprocessing is required.
Change detection reduces the processing area of time-
consuming processes such as object recognition, human
detection, and human behavior analysis; therefore, it
reduces processing time of the whole system and in-
creases the performance by reducing false positive de-
tection from background region.

Though the environments in which practical surveil-
lance systems operate may include many large distur-
bances such as illumination changes and background
movements, most of the traditional change detection
methods are robust against either illumination changes
or background movements. For example, Bi-polar Ra-
dial Reach Correlation (BPRRC) [1] is robust against
illumination changes by using texture model but not
robust against background movements because of its
rigid texture model.

We propose Probabilistic BPRRC (PrBPRRC), the
extension of BPRRC, which preserves BPRRC’s ro-
bustness against illumination changes and adds the ro-
bustness against background movements. PrBPRRC
introduces a probabilistic model for background tex-
ture and learns a probabilistic background with inputs
including background movements and foreground inva-
sions. We show the superiority of our PrBPRRC with
ATON Highway data [2], Karlsruhe traffic sequence
data [3], and PETS 2007 data [4].

In this paper we make several assumptions to de-
fine “change detection”: (i) the camera is fixed so that
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background subtraction which compares input with
learned background model can be used for change de-
tection, (ii) change includes foreground objects which
deviate from learned background, and (iii) change
doesn’t include background movements and illumina-
tion changes. These assumptions are natural in surveil-
lance system.

The rest of this paper is organized as follows. We
briefly review several former change detection methods
in Section 2. We then describe the former BPRRC and
our proposed PrBPRRC in Section 3. We compare the
performance of the methods with public datasets in
Section 4 and conclude in Section 5.

2 Related Works

Many background models for change detection have
been proposed. One of the simplest background models
is the single Gaussian model that models each pixel in-
tensity with a single Gaussian distribution (Fig. 1(a)).
The Gaussian distribution can model intensity fluc-
tuation of each pixel caused by sensing devices but
the model is too simple to model real environmental
changes.

Stauffer et al. proposed Mixture of Gaussian (MoG)
[5] that uses multiple Gaussian distributions to model
multiple background intensity distributions caused by
ripples on the water surface and flickering of the dis-
play (Fig. 1(b)). MoG is used in many applications
but requires a decision on the number of Gaussian dis-
tributions. To avoid this decision, Nakai proposed a
non-parametric pixel intensity model with pixel inten-
sity histogram [6] (Fig. 1(c)). Because, in contrast to
the Gaussian model, it doesn’t assume any parametric
models, it can model arbitrary intensity distributions.

Pixel-intensity-based models such as MoG and the
histogram model are not robust against illumination
changes because illumination changes cause large in-
tensity changes deviating from the past intensity his-
tory. For example, background models trained with
images in the sun cannot cover inputs in the shade. To
increase robustness against illumination changes, some
methods introduced texture information. Texture in-
formation based on the intensity differences among lo-
cal pixels is stable against illumination changes because
all the local pixels change their intensities by almost
the same amount and the intensity differences among
them don’t change. Satoh et al. proposed Peripheral
Increment Sign Correlation (PISC) (7] and Heikkila et
al. proposed Local Binary Pattern (LBP) [8] that en-
code the intensity differences between target pixel and
surrounding reference pixels as 0/1 binary code (Fig.



1(d)). Yokoi proposed Peripheral TErnary Sign Cor-
relation (PTESC) [9] that encodes the intensity differ-
ences by —1/0/1 ternary codes to increase the robust-
ness against illumination changes.

Though these texture-based methods are robust
against illumination changes, they cannot work prop-
erly in the region without texture. Plain foreground
objects before plain background with different inten-
sity from foreground cannot be detected by these meth-
ods because both foreground and background have the
same plain texture.
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Figure 1: Schematics of the background model of for-
mer change detection methods

3 Probabilistic BPRRC
3.1 BPRRC

Bi-polar Radial Reach Correlation (BPRRC) [1] is
one of the texture-based change detection methods and
can work properly in the region without texture (Fig.
1(e)). It searches the far reference pixels with enough
intensity differences from a target pixel by skipping
the plain region so that it can detect plain foreground
objects before plain background.

In the training stage, BPRRC searches reference pix-
els with positive intensity difference above a threshold
from a target pixel Bg(z,y) in 8 directions in a back-
ground image Bg. Then, it saves the position of the
reference pixels as b: (z,y) (k =0,...,7). In the same
way it searches reference pixels with negative intensity
difference and saves the positions as b, (z,y). In the
detection stage, in an input image I, it compares inten-
sity differences between target pixel I(x,y) and its 16
reference pixels Ibki (x,y) that correspond to bki(x,y)

in I and detects changes based on the correspondence
B(x,y) between background and input:

7 7
Blry) = (D Bl )+ Y Byl (1)
k=0 k=0

where

B,j(a:,y) _ {1 (Ib,j (x,y) — I(z,y) > 0) o)

0 (otherwise)
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and

s ={ o

The position of the reference pixels can be set by the
mean or mode of the positions from multiple training
images.

Although BPRRC, similarly to PISC and LBP, is
robust against illumination changes, it is not robust
against background movements because of its rigid
background model using reference pixels b:kt(a:7 Y).

(3)

3.2 Formulation of Probabilistic BPRRC

To increase the robustness against background
movements, we introduce a probabilistic model into the
BPRRC background model.

Let the reference pixels with the reach r in the di-
rection k from a target pixel BG(z,y) be bf(z,y,r),
the range of reach r be R, and the count of b be
Num{b}. In the training stage, Probabilistic BPRRC
(PrBPRRC) stores by (z,y,r), the distribution of the
position of the reference pixels, by histogram models as
shown in Fig. 2. In the detection stage, PrBPRRC de-
tects changes as follows. The probability distribution
of bki (z,y,r) is given by

_ Num{bf(x, y,7)}
Num{}, cp by (z,y,m)}

and this can be calculated from the histogram of
bf(x,y,r) learned in the training stage as Fig. 2. Next,

PrBPRRC’s codes of the input pixel I(z,y) with the
reach r and the direction k are given in the probabilis-
tic form as

prob(bi (z,y, 1)) (4)

+ - prob(bz(ﬂ%ya T)) (]bzr (m,y,r) - I($7y) > O)
By (z,y,r) = {0 (otherwise) (5)
and

i _ [roblby (z,9.7) (I (w,9.7) ~ I(a,y) < 0)
By (z,y,r) = {0 (otherwise) (6)

Finally, by marginalizing Eq. (5) and (6) over reach
r and direction k, the correspondence B(z,y) is given
by

7 7
Blay) = (> Y B )+ Y0 By (1)}

k=0reR k=0reR
(7)

Now, the decision of the changes with Eq. (1)-(3) is re-
placed by probabilistic decision with Eq. (4)-(7). This
formulation relaxes the decision of reference pixel posi-
tion and makes PrBPRRC robust against background
texture disturbances caused by background movements
and foreground invasions.

4 Experiment

We compare the performance of several change de-
tection methods with public datasets and show the su-
periority of our PrBPRRC. We use ATON Highway
data [2], Karlsruhe traffic sequence data [3], and PETS
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Figure 2: Schematic of the background model of Prob-
abilistic BPRRC

2007 data [4]. We taught a ground truth for several im-
ages of each dataset: foreground objects such as mov-
ing cars and walking pedestrians as “foreground” (red
in Fig. 3), obscure area such as shadows and crowds
that exist at all times in the background training im-
ages as “don’t care” (blue in Fig. 3), and other area as
“background”.

(a) ATON (b) Karlsr

(c) PETS 2007
Figure 3: Samples of ground truth

We used 20~40 frames for background training and
3~5 frames for testing 1. All the datasets contain back-
ground movements and foreground invasions such as
moving cars, walking pedestrians, swaying trees, and
falling snow. The PETS 2007 data also contain large
illumination changes between S1 sequence for training
and SO sequence for testing.

The ROC (Receiver Operating Characteristic)
curves are shown in Fig. 4. An ROC curve further to-
ward the bottom-left of the diagram means better per-
formance. PrBPRRC (® in Fig. 4) is consistently bet-
ter than BPRRC-mean (A in Fig. 4) with reference pix-
els defined by the mean of multiple training images and
BPRRC-mode (V in Fig. 4) with reference pixels de-
fined by the mode of multiple training images. Though
MoG/Histogram (x in Fig. 4) on ATON Highway I
and PTESC (L] in Fig. 4) on Karlsruhe-stau02 are
slightly better than PrBPRRC, they are much worse
than PrBPRRC on other data. PrBPRRC combined
with PTESC (O in Fig. 4) shows better performance
than PrBPRRC because they complement each other:
PrBPRRC is based on the texture in a broad region
and PTESC is based on the texture in a local region.

IThe description of the experimentation data is as follows:
we used (a) 30 frames at the beginning of the sequence for back-
ground training and 4 frames with 100 frame interval at the
end of the sequence for testing on ATON highway I/II data, (b)
20 frames with 20 frame interval for background training and
3 frames with 100/200 frame interval for testing on Karlsruhe-
dtneu_schnee/stau02 data, (c) 40 frames with 100 frame interval
from S1 sequence for background training and 5 frames with 500
frame interval from SO sequence for testing on PETS 2007 cam4
data. The sequence of Karlsruhe-dtneu_schnee is so short that
the ranges of training and testing sequences are overlapped but
the frames are separate. The sequence of Karlsruhe-stau02 is
reversed because cars stop at the crossing at the beginning of
the sequence and then start to move.
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Some typical results of change detection are shown
in Fig. 5. The parameters of each method such as tex-
ture threshold and texture size are the same for all the
datasets. In contrast to former methods, PrBPRRC is
stable for various datasets with the same parameters.

All the results above show that PrBPRRC is more
stable than former methods against data disturbances
and parameter setting.

5 Conclusion

In this paper, we proposed PrBPRRC, the extension
of the BPRRC, which preserves BPRRC’s robustness
against illumination changes and adds the robustness
against background movements.

We introduced a probabilistic background texture
model into BPRRC. Our new method learns the dis-
tribution of background texture based on the inten-
sity differences between target pixel and reference pix-
els, and detects changes with a probabilistic decision
based on the texture distribution. It enables learning
of a probabilistic background from the training images
including background movements and foreground inva-
sions such as moving cars, walking pedestrians, swaying
trees, and falling snow.

We evaluated several change detection methods with
ATON Highway data, Karlsruhe traffic sequence data,
and PETS 2007 data and showed the superiority of
our PrBPRRC in terms of stability against data dis-
turbances and parameter setting.

In future work, we intend to improve the perfor-
mance by introducing color texture information into
the PrBPRRC model.
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Figure 5: Typical results of change detection for several datasets

151



