
1,000-fps Visual Feedback Control of an Active Vision
System over a High-Load Network

Daisuke Wako, Shingo Kagami and Koichi Hashimoto
Graduate School of Information Sciences, Tohoku University

6-6-01 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan.
{wako,swk,koichi}@ic.is.tohoku.ac.jp

Abstract

A 1,000-fps visual tracking system over a real-
time network based on the standard Ethernet and
UDP/IP technologies is presented. The system con-
sists of a high-speed vision system, a host PC that ex-
ecutes motor-control tasks on an RTOS, and an easy-
to-construct configuration for real-time communication
to deliver the high-speed visual feature information ob-
tained by the vision system to the host PC. Rather
than introducing OS-dependent technologies for real-
time communication, we have developed a dedicated
network processing unit that handles all of the UDP/IP
and Ethernet processing instead of the host PC. The
visual information packets are forwarded in priority
to the other background traffic by off-the-shelf Gigabit
Ethernet switches with the IEEE802.1Q/p QoS mech-
anism. Experimental results show that the end-to-end
delay through three Ethernet switches is below 180 μs
with 20-μs jitters even under a high network load.

1 Introduction

Visual servoing technologies have been widely ap-
plied in various fields such as robot control, industrial
automation and medical applications. As demands on
control performance increase, it has been recognized
that conventional vision sensors are not always fast
enough, and much higher frame rates, which vary from
several hundreds to thousands frames per second (fps)
depending on situations, are required in particular for
feedback control of mechanical systems [1, 2].

In many cases, high-speed visual servoing systems
are implemented as tightly coupled systems. On the
other hand, cooperative visual detection and tracking
by distributed cameras have also been extensively in-
vestigated during the last decade. Nevertheless, very
few studies on high frame rate visual servoing using
networked cameras have been reported. Although high
frame rate vision systems connected through a network
have been used in commercial optical motion capture
systems, to the knowledge of the authors, evaluation
of real-time communication latency of those systems
has not been reported, possibly because it is not so im-
portant for motion capture applications, which do not
include visual feedback.

Kagami et al. presented a 1,000-fps networked vi-
sion system and evaluated its real-time communication
latency [3]. The reported system contains an embed-
ded microprocessor with a real-time operating system
(RTOS) that controls issuing timing of real-time pack-
ets conveying visual feature information. However,

it incorporated no mechanism to guarantee real-time
communications and the evaluation was done in the
environment without significant background traffic.

Meanwhile, it has been strongly demanded to
achieve hard real time communications required for
robot control and industrial automation over the
widely-used Ethernet and TCP/IP network. In re-
sponse to this demand, the standard for the indus-
trial Ethernet IEC 61784-2 was issued in 2007, and
various kinds of communication profile families such
as PROFINET and EtherCAT have been standardized
and are already commercially available [4, 5].

However, these systems are mainly prepared as re-
placement for existing industrial fieldbuses, and there
seems to exist a high barrier for them to be used, for
example, by researchers in the fields of robotics and
computer vision. These systems, though standardized,
do not offer interoperability between different commu-
nication profile families, and typically users have to
consider spending a sizable sum of money on equip-
ments so that their network interfaces and switches are
unified with a single profile family. In addition, choices
for hardware and software of end nodes, i.e. computers
for vision and control processing, are restricted to ones
that support the profile family.

In this paper, we discuss a more easy-to-construct
configuration for real-time communication that does
not impose severe restriction on choices for hardware
and software of the end nodes, suitable for connect-
ing high-speed sensors and actuators in LAN environ-
ments. The presented system consists of a high-speed
vision system that enables 1,000-fps image acquisition,
a host PC that executes motor-control tasks on an
RTOS, and an easy-to-construct real-time communi-
cation network to deliver the high-speed visual feature
information obtained by the vision system to the host
PC. A target tracking system with a 1,000-fps visual
feedback rate1 is constructed on this system and its
control performance when the network is cluttered with
heavy background traffic is evaluated as well as end-to-
end communication delays.

2 Design Strategy

2.1 Isolating Network Processing from the
End Node

In order to reduce variation of communication delays
in Ethernet LANs, we must reduce variation of both

1As it is difficult to specify the acceptable maximum end-to-
end delay because it depends on situations, we employ a mil-
lisecond, the communication interval, as the immediate goal.

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN3-22

114

delays that occur in the end nodes and that occur in
Ethernet switches. Firstly we describe our strategy to
reduce the variation of the delays in the end nodes.

When a multi-task operating system is used in an
end node, the way the delays occur strongly depends on
the OS since most of the network protocol processing is
typically done in the OS kernel. While some of RTOS
are equipped with dedicated real-time protocol stacks,
others, such as a widely-used free RTOS RTLinux/free,
do not allow a real-time task to access the network
directly, but instead it has to be accessed via a non-
real-time task, which introduces severe unpredictable
delays. To avoid these unpredictable delays, several
modifications to the kernels have been proposed and
successfully applied (e.g. [6]).

In any of the cases, the mechanisms to support real-
time communications impose restriction on the choices
for OS in the end node and their versions. It sometimes
forces users, for example, to give up introducing a new
peripheral device, or to keep using an old PC.

To avoid these undesirable situations, we isolate the
network protocol processing from the end node, and
have them executed in a dedicated external process-
ing unit. The dedicated processing unit contains its
own microprocessor and Ethernet interface, and it can
periodically send and receive UDP/IP packets indepen-
dently from the end-node host. Employing UDP/IP as
a transport protocol offers flexibility in choices for im-
plementations of communication peers — for example,
users can employ the system proposed in this paper
as a robot control node and a system running another
RTOS with a real-time UDP/IP protocol stack as a
vision sensor node.

It would make no sense if the interface between
the dedicated network processing unit and the end-
node host were complicated and implemented in a way
highly depending on the host OS. Thus they are con-
nected to each other through a simple shared memory
so that the host can send and receive data only with
program read/write operations, that is, without using
interrupts.

A similar design concept can be seen in netX by
Hilscher GmbH [7]. netX is a network processor that
supports many fieldbuses and real-time Ethernet pro-
file families, on which a real-time kernel called rcX
runs. Although it is rather overspec for our goal, in
which only the standard Ethernet and UDP/IP are
used with consumer-use off-the-shelf network switches,
it will be possible to implement our architecture on it
as an alternative to the iTRON/SH-4 implementation
described below.

2.2 Introducing Gigabit Ethernet
Switches with QoS Control

Secondly we describe our strategy to reduce the
variation of the delays that occur in the network
switches. We do not develop a new hardware for
this issue, but introduce an off-the-shelf Gigabit Eth-
ernet (GbE) switch with the IEEE 802.1Q/p quality-
of-service (QoS) control mechanism, which has been
standardized mainly aiming at multimedia communi-
cations such as video and voice streaming, and evaluate
its effectiveness in motor control applications.

It should be noted that the reason we employ GbE
switches is not for the sake of bandwidth, but for ensur-
ing the latency. Even when strict priority queuing, in

which a higher-priority packet is always preferentially
served, is employed, a highest-priority packet may be
kept waiting until the packet just being transmitted
when the highest-priority packet arrived is completed.
Thus the worst-case delay of the highest-priority packet
per hop is the time spent for a maximum-size packet
to be transmitted at the wire speed.

This worst-case delay per hop at the 100-Mbps wire
speed is as long as approximately 120 μs, which causes
nonnegligible variation of the end-to-end delay com-
pared to the packet interval, which is assumed to be a
millisecond in this paper, when the packet goes through
several hops. By employing GbE switches, the worst-
case delay per hop is reduced to 12 μs, and thus the
end-to-end delay will be within a millisecond in a LAN
with a realistic number of hops. Note that we assume
jumbo frames are not used in the LAN. Even if there
are many streams of real-time traffic with the highest
priority, it will not be a big problem as long as each
of the real-time packets are sufficiently small and the
number of the real-time streams is not so large.

3 Implementation

Our test implementation consists of a high-speed
smart camera node, a PC to control an actuator, and
a network connecting them to each other. The camera
acquires images at 1,000 fps and send the position of a
target in the image at each frame to the PC.

The camera node is the high-speed vision system
VCS-IV described in the reference [3]. It is based on a
CMOS vision chip [8] containing 64× 64 pixels within
a 5.4 × 5.4 mm2 area. Each pixel contains a digital
processing element and pixel-level parallel processing
is carried out. The extracted image feature informa-
tion is handled by a set of real-time tasks in a μiTRON
4.0 compatible RTOS, Mispo NORTi 4, running on a
Renesus SH-4 240-MHz processor. Image feature val-
ues are sent as series of UDP packets to the control
PC. Since real-time tasks in this system can send and
receive network packets directly, we do not have to em-
ploy the isolating strategy described in Section 2.1 on
this side.

The PC for actuator control has an Intel Pentium 4
processor 3.0 GHz and a 1-GB RAM, which runs Vine
Linux 3.2 (kernel 2.4.33) with RTLinux-3.2-rc1. Since
this free version of RTLinux does not allow real-time
tasks to access network resources directly, we employed
the isolating strategy described in Section 2.1.

As the dedicated network processing unit iso-
lated from the host PC, an Alpha Project MS104-
SH4 board is employed, which is the same product
used as the second-level control board for the vi-
sion system VCS-IV. A Renesus SH-4 240-MHz pro-
cessor (SH7750RF240) and an SMSC Ethernet chip
LAN91C111 are implemented on the board and the
RTOS NORTi 4 is installed in the same way.

The shared memory between the network process-
ing unit and the host PC is implemented with Inter-
face Corp. PCI-4913 and MAT-4914. The host PC and
the network processing unit access this shared memory
through the PCI bus and the PC/104 bus, respectively.

Generation of receiving and sending tasks, reception
and sending of data, and other management operations
can be designated from the host. The API functions
for these are all implemented by the read and write
primitives of the shared memory without any help of

115

interrupts. When a receiving task or a sending task is
generated, a corresponding ring buffer is allocated in
the shared memory. The sending task is waken up by
a periodic timer interrupt, reads out the data stored in
the ring buffer, and sends a UDP packet containing the
data. On the other hand, when a UDP packet arrives
at the Ethernet port, the receiving task is waken up by
the hardware interrupt, and writes the data delivered
by the UDP packet into the ring buffer. The host must
poll the ring buffer repeatedly in order to check if any
received data are available because use of interrupts is
avoided on the host side.

The camera node and the PC are connected with
a network consisting of Planex Communications SW-
0208G GbE switches. SW-0208G is a consumer-use
GbE switch with eight 1-Gbps Ethernet ports support-
ing IEEE 802.1Q VLAN and IEEE 802.1p QoS con-
trol. When a packet of the real-time traffic arrives at
the first switch, the VLAN tag corresponding to the
highest priority is set to the packet, and it is queued
strictly in priority by all the switches until it arrives at
the destination node.

Note that the links between the end nodes (the cam-
era and the PC) and the edge switches are 100-Mbps
ones while the links between the switches are 1-Gbps
ones. It does not matter because the links connected
to the end nodes are almost exclusively used by the
real-time traffic2.

4 Experiments

4.1 Experimental Setup

Figure 1 shows the setup for the experiments, as-
suming a scenario of servoing a remote actuator with
visual information from a camera. For a simple demon-
stration, we use a pan/tilt active camera platform as an
actuator example, and mount the camera on it. This
configuration, in which the actuator is not actually in
a remote site, may seem strange, but will be sufficient
for proof of principle.

The camera detects the centroid of a moving target
in the image and sends its image coordinates to the PC
at 1,000 fps. The image coordinates of the target cen-
troid are expressed by the 0th-order moment and the
1st-order moments in x and y directions of the target
region in the image, each of which is a 32-bit integer.
Thus the data size for a frame is 12 bytes and the Eth-
ernet frame size is fixed to 64 bytes, the minimum size
defined in the Ethernet specification. Since the details
of image processing are not focused in this paper, we
used a white the target and kept the background black.

The packet sent from the camera travels through
three GbE switches and arrives at the PC. The PC con-
trols the pan/tilt motors of the active camera platform
by a PD control law so that the centroid of the target
comes to the center of the image. The pan and tilt axes
of the active camera platform [9] are direct-drive actu-
ators driven by Yaskawa 100-W Σ-II AC servo motors.
The active camera is shown in Figure 2

Three extra PCs are connected to the first (that is,
next to the camera) GbE switch, and another extra
PC is connected to the third (next to the control PC)

2Except for packets incoming to the end nodes including a
broadcast packet. Although the effects of these packets are not
considered in this paper, they should be filtered out if possible.

Pan/Tilt Active
Camera Platform

Load Traffic SendersLoad Traffic Sink

Image Feature Stream

Control Signals

Target

Control PC
(RTLinux) High-Speed Vision

Network Processing Unit

Figure 1: Experimental setup.

Figure 2: High-speed vision system mounted on the
active camera platform.

switch. The first three are used as senders of back-
ground load traffic, and the other one is the sink of the
background traffic. One PC generates approximately
500-Mbps traffic at maximum, and thus the 1-Gbps
bandwidth between the switches is almost saturated.

4.2 Communication Performances

Figure 3 (a) shows the packet receiving interval at
the control PC. The packets of the real-time traffic are
sent every 1 millisecond, which should be interpreted
as an ideal result. For comparison, the corresponding
result for the case without the priority control at the
switches is shown in Figure 3 (b) and the result for
the case without isolating the network protocol pro-
cessing from the host PC is shown in Figure 3 (c). In
all of these three experiments, the extra PCs generated
the background load traffic so that the bandwidths of
the links between the switches are saturated, and some
background processes were randomly executed in the
control PC. In the experiment corresponding to Fig-
ure 3 (c), the packets of the real-time traffic are re-
ceived at a built-in Ethernet port in the PC, and a
non-real-time task in the RTLinux obtained the data
and recorded the time stamps.

These results show that the proposed configuration
is effective in reducing the variation of the communi-
cation delays. The reason Figure 3 (b) exhibits rather
quantized intervals is because this traffic suffered from
many packet drops. No packet drops were observed in
the results shown in Figure 3 (a) and (c).

The end-to-end delay between the camera and the
PC was also evaluated. For this purpose, the offset and
the drift between the clock timers of the sender and
the receiver was calibrated through 250-times two-way
message exchanges between them. Because this cali-
bration procedure has been implemented only within
the network processing unit, the end-to-end delay for

116

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30

(a) proposed

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30pa
ck

et
 re

ce
pt

io
n

in
te

rv
al

 [m
s]

(b) w/o priority control

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30

elapsed time [s]

(c) w/o network processing isolation

Figure 3: Packet receiving intervals. (a) Proposed sys-
tem. (b) Without priority control. (c) Without isola-
tion of network processing from the host PC.

the case without isolating the network processing from
the host was not measured.

In the case without the priority control, the end-to-
end delay varied around from 200 μs to 700 μs. When
the priority control at the switches was enabled, on
the other hand, the end-to-end delay was within 180
μs with 20-μs jitters.

4.3 Active Camera Control

We also evaluated performance of visual target
tracking. A metronome was set at about 300 mm in
front of the active camera, as shown in Figure 2, and set
to swing at approximately 1.6 Hz where the peak-to-
peak amplitude was about 140 mm. The focal length
of the lens was 6 mm.

The tracking performance was evaluated for the
cases with and without the switch priority control. The
root mean squared errors of the target position in the
image space, measured from the goal position, that is,
the center of the image, were 10.26 pixels and 10.98
pixels respectively for the both cases.

While it is difficult to find significant difference in
these tracking performances, clear difference was found
in the input voltages to the motor. Figures 4 (a) and
(b) show time the input voltages to the pan axis of the
active camera platform for the cases with and with-
out the priority control, respectively. The root mean
squared absolute input voltages for the both cases were
1.48 V and 1.77 V, respectively.

Even when the priority control is disabled, track-
ing of the metronome with such a relatively moderate
speed was almost successful thanks to the powerful ac-
tuators employed in the active camera platform, but it
was shown to be at the cost of extra load to the motors.

in
pu

t v
ol

ta
ge

 [V
]

(a) proposed 6

0

-6
10 10.5 11 11.5 12 12.5 13

6

0

-6

elapsed time [s]
10 10.5 11 11.5 12 12.5 13

(b) w/o priority control

Figure 4: Input voltages to the pan axis. (a) Proposed
system. (b) Without priority control.

5 Conclusion

In this paper, a 1,000-fps visual tracking system over
a real-time network based on the standard Ethernet
and UDP/IP technologies has been demonstrated. By
isolating network protocol processing from the host PC
and employing consumer-use off-the-shelf Gigabit Eth-
ernet switches with the IEEE 802.1Q/p QoS mecha-
nism, it has been shown that real-time delivery of peri-
odic sensory information with a period of 1 ms is pos-
sible with sufficiently low latency even under a heavy
network load.

References

[1] Y. Imai, A. Namiki, K. Hashimoto and M. Ishikawa,
“Dynamic catching using a high-speed multifingered hand
and a high-speed vision system,” in 2004 IEEE Intl.
Conf. on Robotics and Automation, pp. 1849–1854, 2004.

[2] R. Ginhoux, J. Gangloff, M. de Mathelin, L. Soler,
M. M. A. Sanchez and J. Marescaux, “Beating heart
tracking in robotic surgery using 500 Hz visual servoing,
model predictive control and an adaptive observer,” in
2004 IEEE Intl. Conf. on Robotics and Automation, pp.
274–279, 2004.

[3] S. Kagami, S. Saito, T. Komuro and M. Ishikawa, “A
networked high-speed vision system for 1,000-fps vi-
sual feature communication,” in First ACM/IEEE Intl.
Conf. on Distributed Smart Cameras, pp. 95–100, 2007.

[4] “PROFINET,” http://www.profibus.com/pn/.
[5] “EtherCAT Technology Group,” http://www.ethercat.

org/.
[6] Y. Uchimura and T. Yakoh, “Bilateral robot system on

the real-time network structure,” IEEE Trans. Indus-
trial Electronics, vol. 51, no. 5, pp. 940–946, 2004.

[7] “Hilscher GmbH,” http://www.hilscher.com/.
[8] T. Komuro, S. Kagami and M. Ishikawa, “A dynami-

cally reconfigurable SIMD processor for a vision chip,”
IEEE J. Solid-state Circuits, vol. 39, no. 1, pp. 265–268,
2004.

[9] Y. Nakabo, M. Ishikawa, H. Toyoda and S. Mizuno,
“1ms column parallel vision system and its application
of high speed target tracking,” in IEEE Intl. Conf. on
Robotics and Automation, pp. 650–655, 2000.

117

