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Abstract

A new aam matching algorithm based on a deriva-
tive free optimization is presented and evaluated in this
paper. For this, we use an efficient model-based opti-
mization algorithm, the so called newuoa algorithm
from M.J.D. Powell. We compare the new matching
method performances against the standard one based
on a fixed Jacobian matrix learned from a training set,
and show significant improvements in terms of accu-
racy.

1 Introduction

Since the seminal work of Edwards, Cootes and Tay-
lor [7], Active Appearance Models (aam) have been
widely used for modeling and registering visual de-
formable objects, in applications ranging from medical
imaging [18] to facial behavior recognition [9]. In the
context of non-rigid face modeling, aams have been
employed to encode in a compact way the variations in
face appearance across shape and texture. Numerous
extensions have been proposed to the original formula-
tion [4] to make the aam more accurate, more robust
to occlusions or pose variations, or even to reduce the
complexity of the learning or the matching processes.
The models, learned from a set of suitably annotated
examples, are matched to previously unseen faces by
updating the model during search, using essentially two
kinds of approaches.

The first one focuses on regression-relevant feature
representations [20, 6, 16]. In the original aam fit-
ting algorithm [7], the error between the input im-
age and the closest model instance (the texture resid-
ual vector r) with regard to the model parameter up-
dates δp was modeled by a linear regression approach.
The method in [20] suggests that the shape can be
estimated directly from the texture using a linear re-
gression, considering they are sufficiently correlated.
More recently, an efficient multivariate regressor from
Haar-like features to the aam parameter update space,
learned through a boosting procedure has been pro-
posed in [16]. This method boasts significant improve-
ments in terms of accuracy. A fast algorithm was
proposed in [6], based on canonical correlation analy-
sis. This method learns a linear regression between
the canonical projections of the texture residuals and
random model parameter displacements. The authors
show that, because of its better robustness to noise, the
CCA provides more accurate parameter updates, lead-

ing to a reduced number of iterations in the matching
procedure.

The second class of approaches treat the matching
as a non linear optimization problem [3], and the usual
way to drive the parameter fitting algorithm is to use a
form of gradient descent. Cootes et al. proposed a sim-
plified Gauss-Newton procedure with a fixed Jacobian
matrix (and thus a constant updating matrix) com-
puted offline by numeric differentiation on typical facial
images. The fixedness of the updating matrix is jus-
tified assuming that the error surface around the true
minimum can be reasonably well approximated by a
quadratic function. And it has been widely shown that
this method allows efficient matching to take place,
even if there are several parameters to evaluate. Ex-
tensions to this method have been introduced, at the
expense of computing time, by updating the Jacobian
as the search progresses [2, 5]. A Gauss-Newton op-
timization method has been proposed in [1] by Baker
and Matthews, introducing the inverse compositional
image alignment algorithm. By reversing the role of
the image and the model in the error function to mini-
mize, they demonstrate that the Jacobian matrix, to a
first order, becomes constant throughout the fitting al-
gorithm. The resulting updating matrix is analytically
derived from the cost function itself and not numeri-
cally estimated from a training set. This results in an
improvement of the fitting accuracy and a reduction
of parameter updatings compared to the basic version
of the aam. In [17], Baker et al. propose extensions:
the project-out and the simultaneous inverse composi-
tional approaches. In the first one, the shape parame-
ters are iteratively updated, and the texture parame-
ters are then estimated in a single step. This algorithm
deals only with very subtle appearance variations. In
the second one, the shape and texture parameters are
estimated simultaneously, resulting in a fairly slow but
more accurate algorithm.

Our motivation in this paper is to evaluate the effi-
ciency of one of the best state-of-the-art derivative free
optimization methods, the so called newuoa (NEW
Unconstrained Optimization Algorithm) proposed by
M.J.D. Powell [14], in the framework of aam match-
ing. This model-based trust region optimizer has been
demonstrated as a very powerful tool to estimate the
minimum of noisy, smooth and piecewise smooth objec-
tive functions; it outperformed geometry-based meth-
ods like the Nelder-Mead (or downhill simplex) algo-
rithm and a pattern-search one, in many cases by a
wide margin [11]. Furthermore this low-complexity op-
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timizer performs very well in a recent comparison of
model-based methods [13], and it has been successfully
used in the context of rigid, linear and piecewise linear
registration of medical images [19].

In order to motivate our approach, we compare its
performances against the basic aam based on a simpli-
fied Gauss-Newton procedure and usually considered
as a good baseline indicator for evaluating new match-
ing methods. Performances are compared in terms of
accuracy on a variety of datasets.

2 Methods

We introduce in the two next subsections a brief
overview of the aam’s parametrization and construc-
tion, and introduce the newuoa optimization algo-
rithm.

2.1 Basic AAM search

A statistical appearance model describes an object
of a predefined class by simultaneously encoding its in-
trinsic variation in shape and texture. In the context
of active appearance models for face analysis [3], as-
suming that the shape and the texture spaces follow
a Gaussian probability distribution, the facial appear-
ance variability is linearly modeled with a Principal
Component Analysis (pca). By shape, we mean a set
of landmark points sampled on the main contours and
features of the face. By texture, we mean the pattern of
intensities enclosed within the convex hull of the shape.

First, the N facial textures of all the training orig-
inal faces are warped to the Procrustes mean shape,
yielding a new set of N shape-free textures. A pca

is then applied to shape and shape-free texture data,
denoted respectively by s and g: each training face is
so represented by shape and texture model parameters
bs, bg:

s = sm + φsbs g = gm + φgbg

where sm, gm are respectively the mean shape and tex-
ture (suitably normalized), φs, φg are the eigenvectors
of shape and shape-free texture covariance matrices. A
third pca is then performed on a concatenated shape
and texture parameters b, to obtain a combined model
vector c given by b = φcc, where:

b =

(
Wsbs

bg

)

Ws is a diagonal scaling matrix between shape and
texture and φc is a set of eigenvectors.

From the combined appearance model vector c, a
new instance of shape and shape-free texture can be
generated:

smodel(c) = sm + Qsc gmodel(c) = gm + Qgc.

where matrices Qs and Qg describe the modes of vari-
ations derived from the training set.

In order to match a target face in a given image,
the shape and texture instances have to be trans-
lated, scaled and rotated. This similarity transforma-
tion can be represented by a vector of four parame-
ters p = (tx, ty, α, θ). Those parameters denote re-
spectively the x and y translation of the shape, and

the scaling factor and inplane rotation relatively to the
learnt mean shape.

The aam paradigm provides an iterative simpli-
fied Gauss-Newton search technique in order to com-
pute automatically the pose and appearance parame-
ters (p̂, ĉ) that best approximate the target face in the
image [3]. The minimized criterion is the quadratic
norm E of the residual vector

r(p, c) = gmodel(c)− gim(p, c) (1)

where gim(p, c) denotes the image texture sampled at
the hypothesized pose p and shape smodel(c). Start-
ing from an initial guess (p̌, č), it is shown for example
in [5] that the corrections (δp, δc) to apply to the pa-
rameters so as to minimize the related norm of the
residual vector are given by:

δp = Rp.r(p̌, č) δc = Rc.r(p̌, č). (2)

where the two constant matrices (with † denoting the
pseudoinverse):

Rp =

(
∂r

∂p

)†

Rc =

(
∂r

∂c

)†

(3)

are precomputed offline by numeric differentiation from
training data, systematically displacing each parameter
from the known optimal value on typical images and
averaging over the training set. Based on equations (2),
the iterative model refinement procedure is described
in [3]. Each iteration updates the aam parameters by
gradually projecting the current texture residual vector
onto the constant matrices Rp and Rc until the norm
of the residual vector does not decrease anymore.

2.2 Derivative-free optimization

We consider one of the best state-of-the-art deriva-
tive free optimization methods, the so called newuoa

proposed by M.J.D. Powell in 2004. This trust-based
method is fully described in [14]. We summarize here
the main lines of the algorithm.

Let us denote a scalar valued objective function
E(x),x ∈ R

n, and consider the following uncon-
strained optimization problem:

min
x∈Rn

E(x)

To solve this problem, the algorithm interpolates m
points of E(x) by means of a quadratic model Q within
trust-regions in an iterative way and finds its minimum.
Each iteration k affects at most one of the interpola-
tion points. Let consider the set Yk composed of m

interpolation points y
j
k, (j = 1, . . . , m) and that, at

the beginning of the kth iteration, no point in Yk has
a lower objective function value than xk so far, and
xk ∈ Yk. The quadratic model at this time is given by:

Qk(xk + d) = E(xk) + dT gk +
1

2
dT Hkd, d ∈ R

n

where gk is a real vector and Hk = ∇2Qk is a n ×
n symmetric matrix. gk and Hk are determined by
imposing the m following interpolation conditions:

Qk(yj
k) = E(yj

k), j = 1, . . . , m
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The points in Yk must satisfy some geometric proper-
ties to remain sufficiently linearly independent, in order
to avoid degeneracies [14, 8]. Once Qk has been iden-
tified, a step dk has to be added to xk by solving the
trust-region subproblem:

min
d

Qk(xk + d), subject to ‖d‖ ≤ Δk

for some trust-region radius Δk ≥ ρk > 0. Δk

will be further reduced at most iterations until it
reaches ρk (see [15] for the details). The parameter
ρk, k = 1, 2, 3, . . ., will decrease gradually from ρini to
ρfin > ρini only when the constraint Δk ≥ ρk prevents
further reductions in E. ρini and ρfin are respectively
a user-defined initial and final radius. The algorithm
finishes when the trust-region radius reaches the lower
bound ρfin that fixes the final accuracy.
Furthermore, Powell recommends m = 2n + 1 (instead
of the general m = 1

2
(n + 1)(n + 2)), which only in-

creases as n, the number of variables. This is made
possible, when updating the quadratic model, by min-
imizing the Frobenius norm of the change in H [15].

3 A new AAM search

Our approach follows the basic aam training pro-
cedure [4]. The basic aam matching is done in an it-
erative way until convergence, by projecting the cur-
rent texture residual image onto a constant matrix in
order to update the displacements in the parameters.
Because the residual image is measured in a normal-
ized shape-free domain, the error surface around the
true minimum is supposed to be reasonably well ap-
proximated by a quadratic function. Instead of using
a simplified Gauss-Newton optimization, such property
motivates us to use a quadratic interpolation based op-
timization algorithm to match the aam, starting from
a pose p0 within an initial trust region around the tar-
get, and with c0 = 0. For this purpose, we use the
newuoa algorithm to minimize the norm of the resid-
ual image (the objective function E) w.r.t. the aam

parameters p and c without derivatives.

4 Experiments

In this section, we compare the newuoa matching
method performances against the standard one based
on a fixed Jacobian matrix learned from a training set.

Table 1: Three aam models.
Model 1 Model 2 Model 3

Training database C-K IMM IMM
# Training images 338 105 200
Shape size 49 49 58
Shape-free texture size 13377 30884 31596
% of Shape variation 95 95 95
# Shape modes 27 14 19
% of Texture variation 95 95 95
# Texture modes 113 68 117
% of Combined variation 95 80 95
# Combined modes 54 12 63
Test database IMM IMM FGnet
# Test images 37 5 879

We use the Cohn-Kanade (C-K) facial expres-
sion [10] and IMM [12] databases to train three
models summarized in table 1. We select annotated
monocular images of 40 different human faces in the

IMM database, with different poses and expressions
and precluding the images with a spot light added
at the person’s left side. In the C-K database, we
select monocular images of 46 different human faces
depicting one to six basic low- and high-magnitude fa-
cial expressions. Experimentations with the newuoa

algorithm are performed using the Fortran code
provided by Powell [14].

Figure 1: Search and reconstruction results on one test
image. Top line, from left to right: target face, basic
aam matching, aam shape. Bottom line: newuoa

matching, newuoa shape.
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Figure 2: Distribution of boundary errors averaged on
37 test images: convergence accuracy histogram.

First, we use the Model 1 (Table 1) and 37 images of
IMM to test the accuracy. For each image we displace
the model from the known best position by a range of
displacements in x, then do the aam searches. The
distribution of the point-to-curve errors is shown in
Figure 2. Our approach exhibits larger proportions of
samples at the lower end of the error range. Figure 1
shows the reconstructions of one face for an initial
displacement in x of 20% of the shape width. In
terms of complexity, in derivative-free optimization,
the performance of the algorithms is usually measured
by the number of objective function evaluations until
convergence. The complexity of one iteration of the
newuoa algorithm is attractive compared to others
and is of order of only O(n3) (only in the worst case,
otherwise O(n2)) when m is linear in n.
Both the basic aam and the newuoa matching algo-
rithms are iterative, and several tries are done during
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each iteration. In the case of Figure 2, 15 (resp. 451)
objective function evaluations are performed during
the aam (resp. newuoa) searches (results averaged
on 37 images). Future work will consist in considering
adaptive trust-region radius to reduce the complexity
of the newuoa search. For testing the performance of
complex displacement, we use the Model 2 (Table 1)
and displace the model by a range of displacement in
both x and y directions. The boundary error is shown
in Figure 3. The newuoa matching method leads to
a much more stable result.

Figure 3: Median boundary error vs. initial displace-
ment in x and y directions in the range of ±12% of
the face shape width. The upper (resp. lower) surface
shows the error of basic aam (resp. newuoa) match-
ing.
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Figure 4: Boundary error against frame number fitted
on a talking face.

Model 3 (Table 1) is tested on the FGnet video se-
quence1, depicting a person engaged in a natural con-
versation. On each successive frame, the basic aam

and newuoa matching algorithms were initialized at
the previously detected pose and respectively at c = č
(the best appearance in the previous frame) and c = 0.
Improvements in terms of boundary errors between the
groundtruth and reconstructed shapes are shown in
Figure 4.

5 Conclusions

We have presented an accurate aam matching
method, using a recent state-of-the-art unconstrained

1
www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face.html

derivative-free optimizer. Results have been compared
to the standard approach based on a simplified Gauss-
Newton optimization, and lead to more accurate esti-
mates of the aam parameters. Future work will address
the complexity of the algorithm w.r.t. trust-region
radius, and its relevance to build accurate and high-
resolution person-specific appearance models.
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