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Abstract

We are currently developing a vision-based system
aiming at automatically generating in situ ultra-high
resolution mosaics in previously unknown, complex and
unstructured underground environments. Nowadays,
image stitching algorithms present several limitations
when dealing with unstructured environments. The
most important to our concern is the ability to deal
with feature-less areas. In this paper we describe an
automatic on line Gigapixel mosaicing system capable
to deal with the absence of reliably detectable and track-
able features. The input of our algorithm is a pose-
annotated sequence of high-resolution images acquired
from a common optical center by a calibrated pan-tilt
motorized digital camera unit. The proposed mosaic-
ing system is powered by a global-to-local pairwise im-
age alignment which recovers the rotations relating the
overlapping images in a coarse-to-fine approach. The
local motion procedure outputs a list of locally matched
anonymous features which are later injected in a bun-
dle adjustment engine for multi-view fine alignment.
The proposed algorithm combines the state of the art
mosaicing techniques in a complementary and efficient
fashion providing an environment-independent solution
for the image mosaicing task. The final output of the
algorithm is a Gigapixel spherical mosaic rendering.
Tests on real data acquired in a prehistorical cave (Tau-
tavel Cave, France) illustrate mosaicing examples ob-
tained from several hundreds of high-resolution images.

1 Introduction and Motivation

The research work presented in this paper addresses
the multi-view image alignment problem for automatic
in situ generation of spherical Gigapixel mosaics in
complex and previously unknown unstructured under-
ground environments. This work is motivated by a
vision-based system under development aimed at gen-
erating in situ photorealistic 3D models of high-risk
and ”difficult-to-access” areas without requiring hu-
man operator intervention.

In challenging environments several needs must be
fulfilled in order to improve the capabilities of the
nowadays image mosaicing algorithms. In this paper
we address key issues for automatic mosaicing in un-
structured environments, such as: dealing with the
absence of reliably detectable and trackable features,
handling noisy initial guess provided by the physical
instrumentation, and robustness to occlusion, illumi-

nation changes and blur. Special attention must be
also given to both constraints, time and in-situ access,
therefore assuring complete scene mosaicing and real-
time performances are majors concerns.

Our paper is structured as follows. Section 2 pro-
vides a concise overview of prior work, followed by the
description of the proposed image mosaicing system in
Section 3. The next section presents experimental re-
sults, summing up with conclusion and future work in
Section 5.

2 Related Work

Image stitching was pioneered back in 1970s. Since
then, the image mosaicing theory has been intensively
addressed and considerably improved by researchers
[9, 1, 4, 3] and commercial groups [2, 8]. A recent
survey of the existent image mosaicing techniques can
be found in [9]. The fundamental ingredient in mosaic
computation is the image alignment process which con-
sists in computing the 3D Euclidian rigid transforma-
tion T which lies between overlapping images. Typical
methods minimize either radiometric or geometric er-
ror over the overlapping area. Two main approaches
are usually employed for the image alignment task. Di-
rect approaches [4] are accurate but unaffordable for
high resolution images even if a close initial estimation
of T is given. If no initial estimation of T is given,
feature-based methods [1] are preferred. These meth-
ods rely on feature extraction and matching followed
by an outliers rejection step via the RANSAC [5] proce-
dure. Feature-based techniques are instable in regions
that are either too homogeneous (such as sky portions)
or too textured. Thus, the algorithm fails to match im-
ages that should be aligned or to fit an accurate and
outlier-free image motion model. While improving the
state of the art these methods remain limited to the
application field: image mosaicing in urban structured
scenes.

3 Gigapixel Mosaicing System

The inputs of our algorithm are several hundreds of
ordered high resolution images acquired from a com-
mon optical center. The capturing device illustrated
in figure 1 is previously parameterized with the field of
view to be cover and the desired overlap between adja-
cent images. The method proposed in this paper uses
the complementarity of the existing image alignment
techniques (direct vs. feature-based) and fuses their
main advantages in an efficient fashion.
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Figure 1: Acquisition System: a NIKON D70 digital camera
(a) with its optical center fixed on a motorized pan-tilt head
attached to a tripod base (b).

First, a global-to-local pairwise motion estimation
is performed which refines the initial estimates pro-
vided by the pan-tilt head. We solve for rotation us-
ing a pyramidal patch-based correlation procedure via
quaternions.

In order to provide robustness to deviations from
pure parallax-free motion1, the global rotation initial-
izes a patch-based local motion estimation. The pair-
wise procedure outputs a list of locally matched im-
age points via a translational motion model. Since
the matched points do not correspond to any corner-
like features, we introduce them as anonymous features
(AF).

Second, the multi-view fine alignment is achieved
by injecting the AF matches in a bundle adjustment
engine [10].

The proposed scheme detains several advantages
over the existing methods. Comparing to Teller’s ap-
proach [4], our method can handle very noisy initial
guess and big amounts of parallax. Moreover, the pyra-
midal patch-based framework enables fast high reso-
lution image matching which is a key aspect for the
Gigapixel mosaicing task. In addition, the bundle ad-
justment scheme enables final optimization with real-
time performances. Comparing to Lowe’s method[1],
the proposed algorithm can deal with feature-less ar-
eas, providing therefore an environment-independent
method for the image alignment task.

The following subsections describe the overall flow of
processing. First, we briefly introduce the camera mo-
tion parametrization. Second, we introduce the global-
to-local pairwise motion estimation, followed by the
multi-view fine alignment description.

3.1 Camera Motion Parametization
Assuming that the camera undergoes purely rota-

tions around it’s optical center the camera motion can
be parameterized by a 3 × 3 rotation matrix R and
the camera calibration matrix K. Under the pinhole
camera model, a point in space p = (px, py, pz)T gets
mapped to a 2D point u = (ux, uy)T through the cen-
tral projection process, which can be written using the
homogenous coordinates (ux, uy, 1)T as following:(

ux

uy

1

)
∼= KR

(
px

py

pz

)
(1)

1In practice we may notice visible seams due to images’ mis-
alignment. One of the main reason is that the motorization of
the capturing device yields some vibration noise which is further
amplified by the tripod platform. Moreover, unmodeled distor-
tions or failure to rotate the camera around the optical center,
may result small amounts of parallax.

where, K =
[
f 0 x0
0 f y0
0 0 1

]
contains the intrinsic param-

eters, i.e. the focal f and the principal point offset
(x0, y0). Note that pixels are supposed to be squares.
Inverting equation 1 yields a method to convert pixel
position to 3D-ray. Therefore, using pixels from an
image (I2) we can obtain pixel coordinates in another
image (I1) by projecting back into the I1’s space using
equation 1. This principle can be summarized by the
warping equation, which is expressed as:

û1
∼= K1R1R

T
2 K−1

2 u2 (2)

Assume that all the intrinsic parameters are known
and the same for all n images, i.e. Ki = K, i = 1, .., n.
We choose unit quaternions for rotations parametriza-
tion, which are compact and elegant for numerical op-
timizations [6]. An unit quaternion is a normalized
four-dimensional vector q̇ = (q0, qx, qy, qz). A rotation
of angle ψ around an axis n can be represented by
the unit quaternion q̇ = (cos ψ

2 , sin ψ
2 n̂) where n̂ is the

unit vector n̂ = n
‖n‖ . The orthogonal matrix R(q̇) cor-

responding to a rotation given by the unit quaternion
q̇ is expressed by:

R[q̇] =

⎛
⎜⎜⎝

q2
0 + q2

x − q2
y − q2

z 2(qxqy − q0qz 2(q0qy + qxqz)

2(q0qz + qxqy) q2
0 − q2

x + q2
y − q2

z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(q0qx + qyqz) q2
0 − q2

x − q2
y + q2

z

⎞
⎟⎟⎠ (3)

In order to handle deviation from the pure parallax-
free motion or ideal pinhole camera model we improve
the camera motion model by adding local motion esti-
mation provided by a patch-based local matching pro-
cedure.

3.2 Global-to-local Pairwise Motion Esti-
mation

The proposed framework starts with the global ro-
tation motion estimation followed by the parallax com-
pensation which is performed via a patch-based local
motion estimation.

Rigid Rotation Computation. The global rotation
estimation follows four steps: (i) pyramid construction,
(ii) patch extraction, (iii) motion estimation and (iv)
coarse-to-fine refinement. At every level of the pyra-
mid l the goal is to find the 3D rotation Rl. Since
the same type of operation is performed at each level
l, let us drop the superscript l through the following
description.

Let R(q̇θ, q̇ϕ, q̇ψ)init be the initial guess provided
by the pan-tilt head, where θ, φ, ψ denote the pitch, roll
and yaw angles respectively expressed in the camera
coordinate system. The optimal rotation is computed
by varying the rotation parameters θ, φ, ψ within an
homogeneous pyramidal searching space, PSS , which
is recursively updated at each pyramidal level. For a
given rotation R(θ,ϕ,ψ), (θ, ϕ, ψ) ∈ PSS we can map
pixels uj

2 from I2 in the I1’s space using the warping
equation expressed in equation 2. The optimal rotation
is obtained by maximizing the similarity in brightness
between I1(u) and I2(u;R) in the overlapping region.
The Zero Normalized Cross Correlation (Z) is used
as similarity measure2 which provides robustness to il-
lumination changes. The global similarity measure is
given by the mean of all the similarity scores computed
for all the patches belonging to the overlapping region.

E[R(θ,ϕ,ψ)] =
1

Nw

Nw−1∑
j=0

ΦjZ(I1(uj), I2(ûj
R(θ,ϕ,ψ)

)) (4)

2computed on an integration window of size (2w+1)×(2w+1)
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Φj defines a characteristic function which penalizes
”lost”3 and ”zero”4 pixels and Nw denotes the num-
ber of valid matches belonging to the overlapping area.
The optimal rotation R̂(θ,ϕ,ψ) is obtained by maximiz-
ing the similarity score Z over the entire searching area
PSS .

R̂(θ,ϕ,ψ) = arg max
(θ,ϕ,ψ)∈PSS

E[R(θ,ϕ,ψ)] (5)

Local Motion Estimation. We use the rotation-
ally aligned images to perform the local patch match-
ing. Let P1 = {P(uk

1)|uk
1 ∈ I1, k = 1, ..., N1} and

P2 = {P(uk
2)|uk

2 ∈ I2, k = 1, ..., N2} be the patches
extracted in image I1 and I2 respectively, which are
defined by a neighborhood W centered around uk

1

and uk
2 respectively. For each patch P(uk

1) ∈ P1

we search for its optimal match in I2 by exploring a
windowed area WSA(uk

2 ; R̂) centered around (uk
2 ; R̂),

where SA denotes the searching area ray. Let Pk,SA
2 =

{P(um
2 )|um

2 ∈ WSA(uk
2 ; R̂) ⊂ I2, m = 1, .., M} be the

M patches found by exploring the searching area with
1-pixel steps. The best match is obtained by computing
the similarity scores for each patch Z(I1(uk), I2(um))
and maximizing the score via bicubic interpolation in
order to provide the best match with subpixel accu-
racy and real time performances. This yields a list of
AF matches (uk

1 ; ûk
2), k = 1, .., N and the possibility to

compute a local translational motion for each match:
tk = ‖(uk

2 ; R̂) − ûk
2‖.

Figures 2 and 3 illustrate the results obtained by
running the global-to-local image motion estimation
procedure on an image pair gathered in the Tautavel
prehistoric cave, France. The capturing device was set
to acquire high resolution images of size 3008 × 2000
with an overlap of � 33%. In order to evaluate our
technique with respect to a feature-based method, we
show the results obtained on an image pair for which
the SIFT detection and matching failed. The rota-
tion computation starts at the lowest resolution level,
Lmax = 5 where a fast searching is performed by ex-
ploring a searching space PLmax

SS = 5◦ with 1-pixel steps
in order to localize the global maximum (Fig. 2c). The
coarse estimation is refined at higher resolution levels
l = Lmax − 1, .., 0 by taking a PSS of 4 pixels explored
with 1-pixel steps. Since deviations from parallax-pure
motion are negligible we speed up the process by com-
puting the local motion directly at the highest resolu-
tion level, l = 0 (Fig. 3).

After translation compensation, the camera motion
consists in purely rotations. Therefore, the optimal
rotation minimizes the angle between the correspond-
ing 3D rays of each match pair. Table 1 illustrates
the residual mean square error (r̄) and the standard
deviation (σr) of the pairwise camera motion estima-
tion [R̂, tk], computed with two different criterions: the
projection error in the 2D space (equation 6) and the
angle between the corresponding 3D-rays given by their
cross product (equation 7). The second row of table
1 verifies the rotation estimation correctness showing
that the angular distance RMS×3D between the non-
aligned images (first column) corresponds to the opti-

3the pixel falls outside of the rectangular support of I2
4missing data either in I1(ûj

R) or I2(ûj
R), which may occur

when mapping pixels ûj
R in the I2’s space

Figure 2: Rigid Rotation Estimation.(a)origin I1, (b)image to
align I2, (c)global maximum localization at level Lmax = 5,
(d)rotationally aligned images at level l = 0: I1-red chan-

nel, the warped image I2(u; R̂)-green channel, R̂(θ, ϕ, ψ) =
(17.005◦, 0.083◦, 0.006◦).

Figure 3: Anonymous Features Matching Procedure. W = 15
pixels, 85 AF matches. (a)P(uk

1), (b)P(uk
2) extraction in I2

using the rotation initialization, (c)Bicubic fitting for an ar-
bitrary patch: SA = 32 pixels, matching accuracy: 0.005
pixels, (d)AF-based optical flow: P(uk

2) blue, P(ûk
2) yellow,

t̄ = [1.6141, 1.0621] pixels.

mal rotation estimate, R̂.

r̄2D =
1

N

k=N∑
k=1

‖uk
i − KR̂T

ijK
−1(ûk

j − tk)‖ (6)

r̄×3D =
1

N

k=N∑
k=1

‖pk
i × R̂T

ijK
−1(ûk

j − tk)‖ (7)

3.3 Multi-view Fine Alignment via Bun-
dle Adjustment

Given the pairwise motion estimates R̂ij and the
associated set of AF matches P(i, j) = {(uk

i ∈ Ii; û
k
j ∈

Ij)|i �= j, j > i}, we refine the pose parameters jointly
within a bundle adjustment process [10]. This step is
a critical need, since the simple concatenation of pair-
wise poses will disregard multiple constraints result-
ing in mis-registration and gap. As a first approach,
we used the bundle adjustment framework described
in [1], in which the objective function is a robust sum
squared projection error. Given a AF correspondence
uk

i ←→ ûk
j the error function is obtained by summing

the robust residual errors over all images:

e =
n∑

i=1

∑
j∈I(i)

∑
k∈P(i,j)

h(uk
i − KR̂T

ijK
−1ûk

j ) (8)
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Table 1: Residual Error Measures. R̂(θ, ϕ, ψ) =
(17.005◦, 0.083◦, 0.006◦), t̄ = [1.6141, 1.0621] pixels

r̄ ± σr no model t̄ compensation [R̂, t̄] model

RMS2D(pixels) 1989.68 ± 62.83 1988.05 ± 62.74 0.08 ± 0.01

RMS×3D(◦) 16.99 ± 0.51 16.98 ± 0.5 (7 ± 1) × 10−4

where n is the number of images, I(i) is the set of im-
ages adjacent to image Ii and h(x) denotes the Huber
robust error function [7] which is used for outliers’ re-
jection. This yields a non-linear least square problem
which is solved using the Levenberg-Marquardt algo-
rithm. A detailed description of this approach may be
found in [1].

4 Results and Performance Evaluation

Figure 4 illustrates two examples of hemispherical
mosaics obtained by running the proposed Gigapixel
mosaicing procedure on several hundreds of images ac-
quired in the Tautavel prehistoric cave, France. As
shown in figures 4 (a) and (b), the bundle adjustment
step minimizes a criterion measured in the 2D space,
leading to mis-registration errors, which yields correct
results if a sufficient number of AF matches are given.
Our first concern is to improve the multi-view fine
alignment process by simultaneously computing the
optimal quaternions minimizing a criterion computed
in the 3D space in order to reduce the residual error
when using a minimum number of AF correspondences.
We use the spherical projection within the rendering
pipeline introduced by [1]. The mosaic’s high photore-
alistic level is emphasized by a high-performance viewer
which allows for mosaic visualization using 4-level of
detail (LOD).

5 Conclusions and Future Work

This paper presents two main contributions: first,
we introduce the anonymous features which are
an environment-independent features and can be
employed for image matching, tracking or localiza-
tion purposes. Second, a global-to-local pairwise
image alignment is proposed which combines the
state of the art methods complementarity (direct vs.
feature-based). The two ingredients are combined to
propose an automatic Gigapixel mosaicing system for
generating in situ photorealistic mosaics of previously
unknown, complex and unstructured underground
environments, without requiring human operator
intervention. The proposed technique can deal with
several key issues of the Gigapixel mosaicing problem
in unstructured and large-scale environments, such
as: handling the absence of reliably detectable and
trackable features, robustness to noisy initial guess
and to deviations from pure parallax-free motion,
high resolution image alignment with real-time per-
formances, and robustness to illumination changes
and blur. We demonstrated the reliability of our
method by automatically generating photorealistic
mosaics of a challenging underground prehistoric
cave. In order to decrease the number of matches
required by the bundle adjustment step, improving
the multi-view fine alignment is an ongoing work. In
the near future, the produced Gigapixel mosaics will
be made available on the world wide web5 allowing for
virtual visits of the Tautavel prehistoric cave, (France).

5www.iCaves.fr

Figure 4: Mosaicing tests on data sets acquired in Tautavel
prehistoric cave, France. (a) - cave’s entrance (RMS2D: 1.93
pixels, CPU: 8h 12 min), (b) - cave’s center (RMS2D: 1.76 pix-
els, CPU: 5h 33 min), (c), (d), (e), (f) - illustrate several LODs
corresponding to the left part of mosaic (b).
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