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Abstract

This paper describes a vision-based overtaking vehicle
detection method for driver assistance systems and its
implementation using IMAPCAR, a highly parallel SIMD
linear array processor. The proposed overtaking vehicle
detection method is based on optical flows detected by
block matching using SAD. The optical flow detection is
made robust through its vanishing point detection. As a
result, stable performance of the overtaking vehicle detec-
tion is confirmed and video-rate  (33frames/s)
implementation is accomplished by IMAPCAR.

1 Introduction

Recently, various driver assistance systems have been
put to practical use. These systems are equipped with
in-vehicle sensors for detecting objects around the vehicle.
Among the various types of in-vehicle sensors, the camera
is one of the most important sensors because of its ability
to capture a large amount of information [1]. Many func-
tions for driver assistance systems can be realized by
image recognition, for example, lane detection, vehicle
detection and traffic sign detection. Overtaking vehicle
detection application is one of the useful applications,
which can be used for approaching vehicle warning when
driver is changing lane.

A previously proposed method to this application is
based on optical flow [2], where vanishing point of flow is
first detected as the cross section point of detected lane
mark lines, and then optical flow is detected along each
straight line expanded from that vanishing point. Com-
paring with [2], in this paper, we improved the quality of
optical flow detection, first by using a more robust van-
ishing point detection method, and second by rejecting
ambiguous flow detection results based on their reliability
scores.

Such image recognition tasks generally require high
processing power as much as high power General Purpose
Processors (GPPs) have. However, in-vehicle image proc-
essors are required to emit little heat to facilitate
in-vehicle placement and GPP consumes too much power.
Another approach is to use ASIC (Application Specific
Integrated Circuit), while ASIC has little flexibility so that
it must be designed exclusively for every function and
costs very much. Therefore it is necessary to use ASSP
(Application Specific Standard Product) for in-vehicle
image recognition. IMAPCAR [3], a highly parallel SIMD
linear array processor is designed as ASSP for it. It is an-
other issue how to take advantage of its parallel SIMD
architecture in implementation of the proposed overtaking
vehicle detection method using IMAPCAR.

Comparing with previously proposed in-vehicle multi-
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processor architecture such as Visconti, which is based on
three processor cores each equipped with a separate con-
trol unit [4], IMAPCAR contains less control circuit while
more processing elements. As in many cases one single
control flow will be sufficient to implement time consum-
ing image processing tasks such as optical flow detection,
fully exploiting the existing high degree of data level par-
allelism is more important, thus a processor such as
IMAPCAR will be a better choice.

This paper describes and evaluates an overtaking vehi-
cle detection method and its implementation using
IMAPCAR. As a result of our evaluation, we found that
the overtaking vehicle detection method is robust, and its
efficient implementation can be done by using IMAPCAR,
with a power efficiency that is 66 to 132 times superior to
that when using a 3 GHz GPP.

2 Overtaking Vehicle Detection Method
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Figure 1. Overtaking vehicle detection method.

Figure 1 shows the proposed overtaking vehicle detec-
tion method, and Figure 2 (1) shows a source road image
example. The overtaking vehicle detection method is
based on optical flow and uses the fact that the optical
flow of overtaking vehicles is in an approaching direction,
while that of the background and other vehicles is in a
receding direction (Figure 2 (2)).

2.1 Optical flow detection

Optical flow is detected by block matching using SAD
(Sum of Absolute Difference). An alternative approach for
calculating optical flow is to use spatio-temporal filters.
However, while the later method has a lower processing
cost, its underlying assumption of infinitesimal differences
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Figure 2. Source image and direction of flow.
between two consecutive temporal images is not valid for
video-rate images of in-vehicle cameras used to capture
high-speed moving objects.

One of the difficulties when detecting optical flow is
that flow direction in homogeneous area or single orien-
tation texture areas is ambiguous. In road images in
particular, there is a large area of homogeneous road sur-
face, and some areas that happen to have the same
direction seem to be overtaking vehicles even when they
are not. Such areas are often mistakenly detected as over-
taking vehicle areas.

To avoid this kind of problem, we introduced a method
to improve the reliability of flow detection. Flow reliabil-
ity is improved by identifying mutual corresponding pixel
blocks between two temporal images using not only the
minimum SAD value but also the information of the sec-
ond minimum SAD and the average SAD within each
search area, each normalized by the average intensity of
pixels within each block. Figure 3 shows flow reliability
in which the brighter pixels have a higher reliability and
the darker ones a lower reliability. The flows that have a
higher reliability than a given threshold are kept and all
others are discarded as noise. The threshold is determined
by experiments. Figure 4 shows detected flows. In this
figure the yellow areas shows optical flows in the ap-
proaching direction, and the blue areas optical flows in the
receding direction.
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Figure 3. Reliability of optical flow.
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Figure 4. Detected optical flows.

Further, the areas of connected pixel locations having
approaching direction flows are detected by connect
component labeling, while small areas are discarded. As a
result, each area with a unique label is detected as an
overtaking vehicle area. Moreover, the robustness of
overtaking vehicle detection is improved by tracking de-
tected vehicle areas through time.

2.2 Vanishing point detection

The optical flow to be detected, especially for highway
scenes, has in general the same direction as straight lines
expanding from the so-called vanishing point, which cor-
responds to the vehicle’s own direction, and coincides
almost exactly with the vanishing point of lane markers in
most cases. We therefore decided to also detect nearby
lane markers and their vanishing point, and sought to fur-
ther increase the robustness of optical flow detection by
limiting optical flow directions along expanded lines from
the vanishing point (Figure 5).

Figure 5.

Vanishing point.

Our vanishing point detection method is composed of
three steps, 1) edge point detection, 2) Hough transform,
and 3) reverse Hough transform. During edge point detec-
tion, points with a relatively large horizontal gradient are
detected. Hough transform detects straight lines corre-
sponding to nearby lane markers and other objects that are
in same direction with lane markers, such as guard rails
and road area side lines. Reverse Hough transform draws
the detected lines in the road image space with their
Hough vote, and detects the line crossing point with the
largest vote collection as vanishing point.

In the ideal case, all the detected lines cross at a single
point (vanishing point). However this is not the case in
practice, so that the detected vanishing point position is
incorrect (Figure 6). Therefore, we introduced the follow-
ing two processes for the line drawn image space.

1. Large kernel smoothing of vote collection
2. Evaluation of the variety of line directions

detected|line

Figure 6. Incorrect vanishing points detection. The red
lines are the detected lines, and the blue cross sign is the
detected vanishing point.
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Figure 7. Line directions at crossing points.

Large kernel smoothing of vote collection results in
larger vote collection at the vanishing point through sum-
mation of vote collections in nearby areas. Evaluation of
the variety of line directions is based on the assumption
that various direction lines cross at the true vanishing
point, while similar direction lines cross at fake vanishing
points (Figure.7). To make vote collection larger at points
that have lines in various directions, especially left and
right lane makers, the vote collections at all points are
multiplied by evaluation coefficient E as follows.

_ 2-min(S,,S,)
S5+,

S, is the amount of vote collection in the lower left
area and S, is that in the lower right area, as shown in
Figure 8. E is larger at points that have lines both in the
lower left and in the lower right area, and it is smaller at
points that have lines only in the lower side area. There-
fore, E evaluates the variety of line directions. Figure 9
shows that vote collection in the road image space is im-
proved by the proposed evaluation coefficient.
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Figure 8. Evaluation of variety of line directions.

Figure 9. Correct vanishing point detection.

3 Implementation of Overtaking Vehicle

Detection using IMAPCAR

3.1 IMAPCAR Image Processor

Figure 10 shows a simplified block diagram of the
IMAPCAR highly parallel SIMD linear array processor
and a photo of its PCI test board. IMAPCAR is fabricated
using a 0.13 um CMOS process and integrates 26.8 mil-
lion transistors, including 128 8-bit 4-way VLIW RISC
PEs (Processing Elements) each equipped with a 24-bit
MAC (Multiply Add Accumulate), 256 KB (2 KB/PE) of
data RAM (IMEM), one CP (16-bit RISC Control Proc-
essor) with a 32 KB instruction cache and 2 KB data
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cache, and a DMA engine for data transfer between the
IMEM and external SSRAM. A shift-register configura-
tion is used for transferring video data in parallel with PE
operation into the IMEM or external SSRAM. The LSI is
packaged in a 500-pin TBGA and satisfies the temperature
range requirement (-40 to +85 degrees Celsius) for auto-
motive use. The application-level power consumption is
estimated to average approximately 1 to 2 watts during
operation at 100 MHz.
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Figure 10. IMAPCAR.

Figure 11 shows the IMAPCAR programming model.
Column-wise mapping of one image to each PE is as-
sumed, and the collection of all PE local memories
(IMEM) is called the 2-D memory plane, where source,
destination, and work images can be explicitly allocated
by using the 1DC (One Dimensional C) programming
language, which is a straightforward parallel extension of
C. Each PE can perform access to different pixel locations
in each row (indirect addressing capability), which, as
described later, greatly facilitates parallelization of some
image tasks containing irregular memory accesses.

Image width

Local memory of a PE
Image to be 4
processed
(2D image plane) | A _— Column(s)/PE
------ mapping of an image
PE array
:|“One PE
Figure 11. Image stored in IMAPCAR.

3.2 Implementation using IMAPCAR

The following are two important modules for the im-
plementation of the overtaking vehicle detection algorithm
described in section 2: 1) Optical flow detection and flow
reliability examination, and 2) Hough transform for lane
marker detection. Reverse Hough transform can be im-
plemented in the same way as Hough transform. This
subsection presents ways to implement these modules
taking advantage of IMAPCAR characteristics.

As a characteristic of IMAPCAR is the parallel opera-
tion of PEs as described in subsection 3.1, we
implemented optical flow detection using IMAPCAR by
first generating a shifted image by moving all pixels in the
previous temporal image to an offset of (-dx, -dy). Note
that (dx, dy) is within the block-matching search area.
Next, the differences between the shifted image and the
current temporal image are calculated pixel-wise (Figure
12). The value of each pixel in the difference image is
now the AD (Absolute Difference). The SAD can be cal-
culated by accumulating pixel values in each local area of
the difference image. This process is done for each (dx,



dy) value. Then, the normalized minimum SAD, second
minimum SAD and average SAD are calculated at each
pixel location of the current image, and based on these
three values, the optical flow of each pixel location and its
reliability are calculated. As the above processes can all be
performed independently for each pixel, parallel process-
ing can be easily achieved by allocating processing at each
pixel of one row to each PE. Step-by-step image shifting
also minimizes the amount of data transfer between PEs.
Moreover, the storage space requirements for the three
different types of SAD values are solved by swapping data
between the IMEM and external SSRAM using the DMA
engine described in subsection 3.1, through which data
transfer is done simultaneously with PE operation.

Figure 12. Difference image.

For detection of lane markers using the Hough trans-
form, first, feature points are detected using a local edge
filter and are selected using a threshold value. Then, these
feature points are collected to the CP. When a line is ex-
pressed by the equation y = a * x + b, the Hough space is a
parameter space (a, b) and the locus about feature point
(x1, yl) is a line expressed by b = x1 * a + yl (Fig. 13).
Implementation of the Hough transform using IMAPCAR
is done by allocating the Hough space in the PEs’ local
memory (Figure 13) so that the “a” axis is along the PE
array. Feature points collected by the CP are then broad-
cast to all PEs, and each PE calculates in parallel the “b”
value and transfers its vote to the corresponding index in
its local memory using the indirect addressing capability
described in subsection 3.1. In this way, the voting process,
which accounts for most of the time required for the
Hough transform, can be efficiently implemented in par-
allel by all PEs.

Feature image

Hough space

Local memo a
Voting / ﬁﬂﬂﬂﬁcus
b PE array

Parallel calculation in PEs——

Figure 13. Hough transform.

4 Evaluation

Figure 14 shows an example of the overtaking vehicle
detection results. Table 1 shows evaluation result on about
30 minutes video in Tomei highway under wet weather
condition, which contains recall rate and false positive
detection times with or without vanishing point detection.
Table 1 shows that the performance of the detection is
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made robust through the vanishing point detection.

Be Careful!

Figure 14. Detection result.

Table 1. Performance of detection.
recall false positive
With vanishing point de- 98 % 0 times
tection
Without vanishing point 91 % 1 times
detection

The processing times of compiler generated code for
both the IMAPCAR and GPP are listed in Table 2. The
image size is 256x240, the block size of SAD is 7x7 and
the search area of minimum SAD is 11x11. For the GPP,
only the optical flow detection and vanishing point detec-
tion processes, which take the most time, are evaluated for
comparison. Table 1 shows that IMAPCAR is 2.73 times
faster than a 3 GHz GPP. IMAPCAR is also 68 to 136
times more power efficient since the power consumption
of IMAPCAR is approximately 2 W while that of the
Pentium 4 is approximately 50 to 100 W.

Table 2. Processing time.

IMAPCAR GPP
@100 MHz @3 GHz
Optical flow detection 21.89 ms 55.03 ms
Vanishing point detection 5.25 ms 19.10 ms
Vehicle area detection 443ms | -
Total 31.57 ms >74.1ms
5 Conclusion

This paper presents an overtaking vehicle detection
method and its implementation on IMAPCAR. The results
show that the proposed method is robust and IMAPCAR
has advantages for the implementation in terms of per-
formance and low power consumption.
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