
Robust Real Time Multi-Layer Foreground Segmentation

Simon Denman, Vinod Chandran, Sridha Sridharan

Image and Video Research Laboratory

Queensland University of Technology

GPO Box 2434, Brisbane 4001, Australia

{s.denman,v.chandran,s.sridharan}@qut.edu.au

Abstract

Many surveillance applications (object tracking, aban-

doned object detection) rely on detecting changes in a scene.

Foreground segmentation is an effective way to extract the

foreground from the scene, but these techniques cannot dis-

criminate between objects that have temporarily stopped and

those that are moving. We propose a series of modifications

to an existing foreground segmentation system [1] so that the

foreground is further segmented into two or more layers. This

yields an active layer of objects currently in motion and a

passive layer of objects that have temporarily ceased mo-

tion which can itself be decomposed into multiple static lay-

ers. We also propose a variable threshold to cope with vari-

able illumination, a feedback mechanism that allows an ex-

ternal process (i.e. surveillance system) to alter the motion

detectors state, and a lighting compensation process and a

shadow detector to reduce errors caused by lighting inconsis-

tencies. The technique is demonstrated using outdoor surveil-

lance footage, and is shown to be able to effectively deal with

real world lighting conditions and overlapping objects.

1 Introduction

Foreground segmentation techniques are used to separate

the foreground objects from a known or learned background.

This is commonly used as a first step in many computer vi-

sion applications such as surveillance systems, and as such

is often followed by additional processes to further segment

the image. Stauffer and Grimson [5] proposed an algorithm

where each pixel was modeled by a GMM, where incoming

pixels are compared to the GMM to determine how well they

match the background. Harville et al. [3] proposed allowing a

higher level process to impose positive or negative feedback

to force changes in the background model as needed; and [6],

proposed the addition of shadow removal and a foreground

support map to aid in the updating of the background. How-

ever, modeling each pixel with a GMM is very processor in-

tensive, and not ideal when foreground segmentation is only

the first step in a multi-step process (i.e. surveillance). To ad-

dress this, Butler et al. [1] proposed using an approximation

to a GMM, where each pixel is modeled as a group of clusters

(a cluster consists of a centroid, describing the pixels colour;

and a weight, denoting the frequency of its occurrence).

Whilst these techniques are able to separate foreground

from background; they cannot segment overlapping fore-

ground objects. Kim et al. [4] proposed a system to address

this using a codebook to model individual pixels. Statistics

for each possible code are recorded to determine which codes

belong to background and foreground, and which belong to

short-term background (i.e. stopped cars).

We propose an adaptation to [1] that incorporates the mo-

tion history of objects and performs multi-layer foreground

segmentation. The proposed method distinguishes between

not only static (background) and dynamic (foreground) re-

gions, but also other categories that may be temporarily static

but not part of the background. We also describe a feedback

mechanism that allows the background model to be altered

by an external process, so that objects of interest (i.e. aban-

doned objects) can be held out of the background whilst other

changes can still be incorporated. In addition we propose

adding a variable threshold, shadow detection and lighting

compensation to improve performance.

We demonstrate the improved foreground segmentation on

outdoor surveillance footage, and show that its capable of

accurately distinguishing between active foreground objects,

static foreground objects and a static background; and han-

dling shadows and illumination changes typical of outdoor

surveillance footage.

2 Segmentation Algorithm

2.1 Existing Technique

An efficient method of foreground segmentation that is ro-

bust and adapts to lighting changes was proposed by Butler

[1] based on modeling of pixel attributes in multi-modal dis-

tributions and pixel clustering. The technique was extended

by [2] to incorporate optical flow and improve performance.

In this work, a one-frame history of each pixel was stored in

the form of an index of the matching cluster for each pixel.

The method is further extended into a multi-layer framework

here using such motion information.

Let f(x, y, t) be a frame sequence, where x, y is in [0, N−

1] and t is in [0, T]. Let P (x, y, t′) be a pixel in the frame at

time t′. Pixels are tracked with their motion and colour his-

tory over time interval δt, and have data stored in a set of K

496

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN13-16

clusters, C(x, y, t, 1..K) = (y1, y2, Cb, Cr, w), which repre-

sent a multi-modal PDF. Input images are in Y’CbCr 4:2:2

format. Pixels are paired to create a cluster which consists of

two luminance values (y1 and y2), a blue chrominance value

(Cb), and red chrominance value (Cr) to describe the colour;

and a weight, w. Clusters are ordered from highest to low-

est weight; and the current matching cluster, C(x, y, t,m)
(where m is the index of the matching cluster in the range

1..K), for each pixel is stored, giving an approximation of

the image.
For each (x, y, t) the algorithm makes a decision assigning

it to one of the sets (background, or a motion layer) by match-
ing P (x, y, t) to C(x, y, t, k), where k is an index in the range
1 to K. Clusters are matched to incoming pixels by finding
the highest weighted cluster which satisfies

|P (y1) − C(k)(y1)| + |P (y2) − C(k)(y2)| < LumThr (1)

|P (Cb) − C(k)(Cb)| + |P (Cr) − C(k)(Cr)| < ChrThr (2)

where P = P (x, y, t) and C(k) = C(x, y, t, k). The cen-

troid of the matching cluster is adjusted to reflect the current

pixel colour, and the weights of all clusters in the pixels group

are adjusted to reflect the new state.

wk = wk +
1

L
(Mk − wk) (3)

where wk is the weight of the being adjusted; L is the inverse

of the traditional learning rate, α; and Mk is 1 for the match-

ing cluster and 0 for all others. If there is no match, then the

lowest weighted cluster is replaced with a new cluster repre-

senting the incoming pixels. Clusters are gradually adjusted,

allowing the system to adapt to changes in the background.
Based on the accumulated pixel information, the frame can

be classified into foreground;

fgnd = ∀(x, y, t) where

mX
i=0

C(x, y, t, i)(w) < T (x, y, t) (4)

where T (x, y, t) is the foreground/background threshold; and

background. The foreground can be further split into moving

and temporarily static objects. We define a static region as an

area of motion that has entered the scene and stopped mov-

ing, and an active region as an area of motion that is currently

moving. The separation of these regions is explained in sec-

tion 2.2.

2.2 Static Layers

To discriminate between active and static foreground, we

need to compare against the last cluster at a given pixel, and

any static foreground objects that are present there.
When C(x, y, t,m) = C(x, y, t − 1,m), P (x, y, t) has

a static layer, S(z), initialised, where z is the depth of
the layer. Each layer has a counter, c, and a colour,
(y1, y2, Cb, Cr) associated with it. For subsequent frames
where C(x, y, t,m) = C(x, y, t − 1,m), P (x, y, t).S(z).c
is incremented, otherwise it is decremented. Static pixels can
be defined as

∀(x, y, t) ∈ fgnd where P (x, y, t).S(z).c >= δt (5)

Static pixels can be further organised into layers depending

on when the pixel appears. Layers can be built one on top of

the other, as new objects appear and come to a stop atop an

existing static layers. Layers remain until the observed cluster

is matched to either a lower layer, or the background.
The number of static layers available, Ls, is determined by

the parameters of the background model and the requirements
of the scene. One cluster must be dedicated to the active fore-
ground and there must be one cluster per background mode.
Given this, the maximum number of static layers is

Ls = K − Lb − 1 (6)

where K is the total number of clusters in the background

model and Lb is the number of background modes. Typically,

we set Ls = 2 and K = 6.

The algorithm for detecting and updating the static layers

for a single pixel is outlined in figure 1.

Each static layer is monitored by a counter which is up-

dated each time step, and used to determine the state of the

layer (i.e. static, to be removed). Counters are incremented

when the layer is detected, and decremented only when a

lower level static layer (or background) is detected. When

a higher level static layer (or active layer) is detected counters

are unchanged as the static layer may be hidden below. Coun-

ters are decremented gradually to provide error tolerance for

incorrect cluster matching, or noise. The decrement rate de-

pends on the scene, with more challenging scenes requiring

a slower decrement rate due to the increased chance of an er-

roneous cluster match. Layers are removed when the counter

reaches zero, and counters are capped to guarantee that a layer

can be removed in a set number of frames.

The algorithm has some limitations in that it can only de-

tect overlaps when at least one of the overlapping objects is

static. It is also not possible to determine when a lower level

static object leaves while higher level static objects remains,

or when a lower level objects moves in behind a higher level

object, due to the relevant pixels being obscured.

2.3 Variable Threshold

A variable threshold is added to the motion detection to
aid the system in handling different lighting conditions within
the same scene (i.e. shadow, sunlight, artificial light). The
threshold, T (x, y, t), at P (x, y, t) is dependent on the weight
of the highest weighted (most commonly occurring) cluster,
C(x, y, t,K). A higher weight indicates a more consistent
and stable background, allowing a tighter threshold to be ap-
plied.

T (x, y, t) = Tmax − (C(x, y, t, K).w × (Tmax − Tmin)) (7)

where Tmax is the maximum threshold and Tmin is the mini-

mum threshold. This process is applied to both the luminance

and chrominance thresholds.

The cluster learning rate is such that lower weighted clus-

ters increase in weight faster than higher weighted clusters,

so if T (x, y, t) becomes too low and motion is incorrectly

detected, C(x, y, t,K).w will be reduced substantially by a

match to a lower weighed cluster, increasing T (x, y, t) and

497

Figure 1. Static Layer Matching Flowchart - If the pixel already has static layers, we compare against these. If there are no layers, or

no matches to existing layers, we check to see if there is possibly a new static layer forming (last two frames have the same colour at the

pixel).

returning P (x, y, t) to a state of no motion. This results in

the thresholds for each pixel being able to reach, and approx-

imately remain at, a natural equilibrium.

2.4 Feedback

It is important to allow changes to occur in the background

model as the scene varies, but we must also prevent fore-

ground objects of interest being incorporated into the back-

ground. As it is not practice for the motion detector to make

these decisions, we propose a method where by an external

process can make these decisions.
The inverse of the weight adjustment algorithm can be

used to prevent the object from being incorporated into the
background model, by effectively stopping all weight updates
so that objects of interest remain in the foreground.

wk =
(Lwk − Mk)

L − 1
(8)

where wk is the weight of the cluster being adjusted; L is

the inverse of the learning rate (lower values will result in

background changes being incorporated faster); and Mk is 1

for the matching cluster and 0 for all others.

2.5 Lighting Compensation

In surveillance situations, lighting levels can change

rapidly resulting in large amounts of erroneous motion. To

prevent this we propose incorporating simple adjustment to

the luminance threshold to compensate for lighting changes.
For each frame, the total luminance (Lumf) is calculated

by summing the luminance values for all pixels that are de-
tected as background, and the highest weighted background
cluster (C(x, y, t,K)) for pixels detected in motion. We omit
the motion pixels to ensure that a strongly coloured fore-
ground object does not have an adverse effect on the system,
and that we are only considering changes that are caused by
the lighting. Lumf is used to update the background lumi-
nance (Lumb, the total luminance in the background model),
which is subject to the same learning rate as the background
model.

Lumb(t) = Lumb(t − 1)
L − 1

L
+ Lumf

1

L
(9)

For each frame the ratio between Lumb and Lumf is cal-
culated, and used to calculate the offset for the luminance
threshold (LumAdj). This is added to the luminance thresh-
old when processing the next frame, so that the system will be
tolerant of the lighting change, but remain sensitive to other
motion.

LumAdj =

�
max(Lumb, Lumf)

min(Lumb, Lumf)
− 1

�
∗ 255 (10)

To cope with lighting changes in isolated areas of the image,

we subdivide the image into a grid, and calculate the lumi-

nance adjustment for each subregion. The appropriate thresh-

old is then applied when processing each region.

2.6 Shadow Detection

Shadows can result in motion being detected where there
is none. As such, it is important to recognise shadows and
ensure that they are not recorded as motion. Shadows can be
characterised by the fact that they alter the luminance com-
ponent of the objects colour, but have minimal effect on the
chrominance. We add shadow detection to the algorithm by
adding additional constraints when matching the incoming
pixels to the clusters.

0 < (C(k)(y1) − P (y1)) + (C(k)(y2) − P (y2)) < ShadThr (11)

|P (Cb) − C(k)(Cb)| + |P (Cr) − C(k)(Cr)| < (ChrThr/S) (12)

If there is a positive difference in the luminance, less than

the prescribed shadow threshold, ShadThr, and only a small

difference in the chrominance (determined by dividing the

chrominance threshold, ChrThr, by an integer S) we have

a shadow and motion is not detected at P .

3 Results

Testing was conducted using a 10000 frame sequence of

real world data acquired at a public passenger drop off area.

Ten frames which illustrated various effects such as lighting

variation, shadows and overlapping objects were hand seg-

mented for comparison (it is not practice to hand segment

the entire sequence). Performance was measured in terms

of false negatives (FN, motion present in ground truth but

498

not detected) and false positives (FP, motion detected but not

present in ground truth). The algorithms overall performance

was compared to Butler’s [1] (see table 1). Incorrect detection

of the motion type results in a FN and a FP being recorded for

the appropriate motion types (i.e. active foreground detected

when static’s expected - FN for static, FP for active; static

detected in layer two expected in layer one - FN and FP for

static). We measure the performance of the algorithm at clas-

sifying active motion, static motion and shadows, to provide

an indication of the performance of each component. A sim-

ple object detector was applied to the output of our algorithm

to locate foreground objects and apply feedback to the region

they occupy. No morphological operations were applied to

the output of either system.

(a) 11175 (b) 12300 (c) 13300

(d) 15575 (e) 17400 (f) 17525

(g) 11175 (h) 12300 (i) 13300

(j) 15575 (k) 17400 (l) 17525

(m) 11175 (n) 12300 (o) 13300

(p) 15575 (q) 17400 (r) 17525

Figure 2. Multi-layer segmentation results - (a)-(f) original

images; (g)-(l) ground truth; (m)-(r) motion detection output;

green indicates active motion, blue static motion, red in the

ground truth images indicates shadow (which we expect to be

detected as no motion in the bottom row). The captions for

each image indicate the frame number.

Table 1. Motion Detection Results
Our Algorithm Butler’s Algorithm [1]

FN FP FN FP

Active 1.35% 21.60% N/A N/A

Motion

Shadow N/A 26.82% N/A 58.00%

Motion

Static 0.33% 40.85% N/A N/A

Motion

Total 2.19% 32.24% 17.83% 53.94%

Motion

As table 1 and figure 2 show the system performs well and

is able to discern between static and active foreground objects,

as well as cope with lighting changes (see frames 12300 and

13300 in figure 2) and shadows. However, the system does

struggle to deal with lighting various where the background

is widely varied, due to the different textures in the region

(i.e. the area around the rails on the left edge of the image,

see frame 13300 and 15575). The shadow detection can also

effect the motion detection when dark objects enter, such as

the windscreen and windows of the car in frames 17400 and

17525. Despite the limitations of proposed changes however,

they result in a significant improvement in performance, sig-

nificantly reducing the rate of false positives and false nega-

tives when compared to [1]. The modified algorithm is capa-

ble of running in real time. For the test sequence, our algo-

rithm achieved an average execution time per frame of 28.6

ms running on a 3.0GHz Pentium 4 processor.

4 Conclusion

We have described a modified foreground segmentation

process that allows multiple layers of foreground to be de-

tected, and utilises an variable threshold, shadow detection

and luminance compensation to assist in handling varied light

conditions. We have also described a feedback process that

allows the background model to be adjusted by an external

source, providing a means to keep an object from becoming

part of the background. Future work will focus on further im-

proving the lighting compensation, adding adaptability to the

shadow detection and increasing the speed of the algorithm.

References

[1] D. Butler, S. Sridharan, and V. M. Bove Jr. Real-time adaptive

background segmentation. In ICASSP, 2003.
[2] S. Denman, V. Chandran, and S. Sridharan. Adaptive optical

flow for person tracking. In DICTA, Cairns, Australia, 2005.
[3] M. Harville. A framework for high-level feedback to adaptive,

per-pixel, mixture-of-gaussian background models. In ECCV,

volume 3, Copenhagen, Denmark, 2002.
[4] K. Kim, D. Harwood, and L. S. Davis. Background updating for

visual surveillance. In ISVC, pages 337–346, 2005.
[5] C. Stauffer and W. Grimson. Adaptive background mixture

models for real-time tracking. In CVPR, volume 2, page 252

Vol. 2, 1999.
[6] H. Wang and D. Suter. A re-evaluation of mixture-of-gaussian

background modeling. In ICASSP, pages 1017–1020, Philadel-

phia, USA, 2005.

499

