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Abstract

We propose a change detection method which is robust

against illumination change and requires little background

learning as a result of using texture based features. We pro-

pose Peripheral TErnary Sign Correlation (PTESC) which

is robust against illumination changes by using −1/0/1
ternary code for encoding the intensity difference between

pixels in texture, and combine it with Bi-polar Radial Reach

Correlation (BPRRC) which yields high detectability in a

region with little texture. We show that our method detects

changes with fewer false positives and false negatives under

illumination changes compared with former methods.

1 Introduction

Change detection is one of the most basic processes in im-

age recognition, consequently many methods have been

proposed particularly for surveillance [1] Gait recogni-

tion and motion capture in particular require a method with

fewer false positives and false negatives because these ap-

plications need the precise human silhouette [2][3]. Motion

capture also requires a method requiring little background

learning as it can not learn the background in advance, un-

like a surveillance system. We design a method requiring

little background learning and yielding fewer false positives

and false negatives by using texture features which are ro-

bust against illumination changes.

2 Former Methods

Various methods have been proposed for change detection.

The average background subtraction method learns an

average background from background images, and detects

changes by comparing it with input images. This method is

weak with respect to illumination change. To compensate,

methods which normalize intensities in a whole image or a

local region and learn background under various illumina-

tion have been proposed [1].

Eigen background method [4][5] uses an eigen back-

ground subspace which learns illumination changes and

sensor noises by principal component analysis and com-

pares it with input images. This method is not robust against

illumination changes in the case of little background learn-

ing.

Peripheral Increment Sign Correlation (PISC) [6] com-

pares a target pixel Bg(x, y), with the coordinates (x, y) in

a background image Bg, with its 2-pixel-separated periph-

eral pixels Bg(x+2, y), Bg(x+2, y+1), · · · , Bg(x+2, y−
1). And then it encodes the intensity differences as 0/1 pe-

ripheral increment sign pk(x, y) (k = 0, ..., 15) which is 1

in the case that peripheral pixel has a higher intensity than

the target pixel and 0 otherwise. It also encodes p′
k
(x, y) in

an input image in the same way and detects changes based

on the correspondence P (x, y) between the codes.

P (x, y) =
1

16

15
∑

k=0

Pk(x, y) (1)

Pk(x, y) = pk(x, y)p′k(x, y)+(1−pk(x, y))(1−p′k(x, y))

This method is robust against illumination changes because

it encodes illumination-robust intensity difference between

a pixel and its peripheral pixels, however, it can not de-

tect changes such as an untextured object in front of a plain

background with different intensity. Heikkilä et al. pro-

posed Local Binary Pattern (LBP) [7][8] which generalized

PISC on the position of peripheral pixels and it has the same

property as PISC.

Bi-polar Radial Reach Correlation (BPRRC) [9]

searches over reference pixels with positive intensity dif-

ference above a threshold from a pixel Bg(x, y) in 8 di-

rections in a background image Bg and saves the position

as b+

k
(x, y) (k = 0, ..., 7). In the same way it searches over

reference pixels with negative intensity difference and saves

the position as b−
k

(x, y). Then in an input image I , it com-

pares intensity differences between pixel I(x, y) and its 16

reference pixels I
b
±

k

(x, y) and detects changes based on the

correspondence B(x, y) between background and input.

B(x, y) =
1

16

{

7
∑

k=0

B+

k
(x, y) +

7
∑

k=0

B−

k
(x, y)

}

(2)

B+

k
(x, y) =

{

1 (I
b
+

k

(x, y) − I(x, y) > 0)

0 (otherwise)
(3)

B−

k
(x, y) =

{

1 (I
b
−

k

(x, y) − I(x, y) < 0)

0 (otherwise)
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This method, similarly to PISC and LBP, is robust against

illumination changes, however, has many false negatives

because it detects only large changes such as the reverse of

intensity difference between a pixel and its reference pixels.

3 Proposed Method

3.1 Peripheral TErnary Sign Correlation

(PTESC)

PISC and LBP referred in section 2 encodes the intensity

difference between a pixel and its peripheral pixels as 0/1
binary code. As shown in Figure 1(a), this causes false

positives because the code is reversed easily with slight

intensity changes in a region with small intensity differ-

ences, namely plain region. Plain region often occupies

large amount of images, so that stabilizing in plain region is

important. Therefore we proposed Peripheral TErnary Sign

Correlation (PTESC) [10] which stabilizes the encoding by

using −1/0/1 ternary code (Figure 1(b)). The schematic of

encoding is shown in Figure 21.
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Figure 1: comparison of PISC and PTESC
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Figure 2: schematic of PISC and PTESC encoding

This method encodes the intensity differences by

−1/0/1 ternary code based on a threshold TH .

p0(x, y) =










1 ( TH < Bg(x + 2, y) − Bg(x, y) )

0 (−TH ≤ Bg(x + 2, y) − Bg(x, y) ≤ TH)

−1 ( Bg(x + 2, y) − Bg(x, y) < −TH)
... (4)

p15(x, y) =










1 ( TH < Bg(x + 2, y − 1) − Bg(x, y) )

0 (−TH ≤ Bg(x + 2, y − 1) − Bg(x, y) ≤ TH)

−1 ( Bg(x + 2, y − 1) − Bg(x, y) < −TH)

In the case that small intensity changes have happened in

a plain region, PTESC encodes them as 0 stably and does

not cause any false positives. Although PTESC can be un-

stable in a region with intensity differences around TH and

−TH , such a region is rare enough that PTESC is generally

stable.

1We use distant pixels as peripheral pixels for PISC and PTESC, not

2-pixel-separated pixels like original PISC.

3.2 Combination of PTESC and BPRRC

PTESC can not detect an untextured object in front of a

plain background with different intensity from object, be-

cause it detects the texture differences. BPRRC, on the

other hand, can detect changes in such a situation because

it selects reference pixels b±
k

(x, y) from distant textured re-

gion. If a significant enough intensity change, by compari-

son to a reference pixel set, has occurred to the target pixel,

it can be detected. But BPRRC can detect only relatively

large changes such as the reverse of intensity differences so

that many false negatives can be occurred.

We propose a method which can detect changes under

various texture environment by combining PTESC, which

has high detectability under textured background or tex-

tured object, and BPRRC, which has high detectability un-

der untextured environment.

As also shown in the experiments of the next section,

PTESC and BPRRC are mutually complementary because

PTESC is based on the intensity differences in a local re-

gion and BPRRC is based on those in a broad region.

Furthermore, the combination introduces few false posi-

tives because they both have few false positives because of

their illumination robustness. We combine these two re-

sults, ResultPTESC(x, y) and ResultBPRRC(x, y), and

then detect changes as follows.

Result(x, y) =










change (ResultPTESC(x, y) = change or

ResultBPRRC(x, y) = change)

const. (otherwise) (5)

4 Experiment

We compared the performance of the methods described

above with images obtained from an office environment.

We set two illumination environments (A: illumination on,

B: illumination off) by switching on and off fluorescent

lights situated on the ceiling. Ten images2 (2 frame/sec.)

under illumination A are used for background learning and

40 images each (2 frame/sec.) under two illumination en-

vironments are used for test input. Ground truth is de-

fined manually and used for evaluating the detection cor-

rectness. Performance is evaluated by False Negative Error

Rate (FNER), the rate of the person region which is not de-

tected, and False Positive Error Rate (FPER), the rate of the

background region which is falsely detected as object.

FNER =
area of false negative error

true area of person
(6)

FPER =
area of false positive error

true area of background
(7)

The results are shown in Figure 3-5. In the figures “Avg”

means average background subtraction, “Avg-norm” means

average background subtraction with intensity normaliza-

tion in a whole image, “PCA” means eigen background,

and “PCA-norm” means eigen background with intensity

2Only 1 image is enough for PTESC learning, but we use 10 images

for eigen background learning.
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normalization in each block. Figure 3 shows ROC (Re-

ceiver Operator Characteristic) curve which plots FPER and

FNER in log scale with various threshold. Plots at the lower

left mean better performance. Figure 4-5 show the result of

change detection and FNER/FPER under a threshold (each

method uses the same threshold in all experiments).

ROC curve shows that our method (PTESC+BPRRC)

has the highest detectability under almost all conditions.

Detection examples also show it qualitatively.

We applied the same experiment to the PETS-2001 and

PETS-ICVS data distributed by IEEE International Work-

shop on Performance Evaluation of Tracking and Surveil-

lance3. The same thresholds as the experiments of Figure

4-5 are used. Some of the typical results are shown in Fig-

ure 6-8. Our method shows almost the best performance

with PETS-2001 and PETS-ICVS data too. Proper detec-

tion results can be gained with the same threshold setting

for different data, therefore this shows that our method is

not sensitive to the threshold setting.
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Figure 3: ROC curve

3http://www.cvg.rdg.ac.uk/PETS2001/,

http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/

5 Conclusion

In this paper, we proposed an illumination robust change

detection method based on texture features. Our method de-

tects changes with less background learning and has fewer

false negatives and false positives than previous methods,

therefore it can be used not only for surveillance but for

gait recognition and motion capture which require the pre-

cise human silhouette as input.

We required little background learning as a result of

using texture features, which are robust against illumina-

tion changes. We proposed PTESC (Peripheral TErnary

Sign Correlation) which encodes the intensity difference

with −1/0/1 ternary code, which stabilize PISC (Periph-

eral Increment Sign Correlation) and LBP (Local Binary

Pattern) which encodes the intensity difference with 0/1
binary code. PTESC stabilizes the detection because it en-

codes 0 stably in the case that intensity noise has happened

in a plain region, where PISC and LBP codes change 0/1
unstably.

We also propose combination of PTESC, which has

high detectability under textured background or textured

object, and BPRRC (Bi-polar Radial Reach Correlation) ,

which has high detectability under untextured environment.

PTESC and BPRRC are mutually complementary and indi-

vidually produce fewer false positives, so that combination

of them achieves both fewer false negatives and fewer false

positives.

We compared the performances of our method and for-

mer methods such as average background subtraction and

eigen background with images under an office environment.

The results showed that our method had the best perfor-

mance among them, similarly to the experiment with PETS-

2001 and PETS-ICVS data.

We will improve its performance with color information

and color texture in the near future.
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[7] M. Heikkilä, M. Pietikäinen, and J. Heikkilä. A
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Figure 4: detection result under Illumination A (FNER / FPER)
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Figure 5: detection result under Illumination B (FNER / FPER)
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Figure 6: detection result of PETS-2001 Dataset1 Camera2
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Figure 7: detection result of PETS-2001 Dataset3 Camera1 (extreme illumination change)
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Figure 8: detection result of PETS-ICVS-2003 scenario B
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