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Abstract

We propose a two-stage classifier for the elastic bunch

graph matching based recognition of facial expressions.

The major purpose is to calculate distinctive similarity

between image patterns by applying optimal weights to

responses from different Gabor kernels and those from

different fiducial points. In the first stage, we perform

SVM on each fiducial point individually to extract a

weighted feature from the Gabor response. The opti-

mal fusion of those features is then calculated by an-

other stage of SVM, providing the weight between fidu-

cial points. From numerical experiments, the proposed

method shows improved performances when comparing

with other methods.

1 Introduction

Normalization error in head pose variations and fidu-
cial point displacements significantly affects the per-
formance of appearance-based methods for both face
and facial expression recognition, e.g., eigenface, Fish-
erface, etc. Some model-based methods such as the
Elastic Bunch Graph Matching(EBGM)[1], could alle-
viate the problem by explicitly including the position
matching of features. Using Gabor filters in EBGM
to extract local descriptors further improves the ro-
bustness against light and contrast.[2] [3] Extensions of
EBGM to tolerate larger variations in pose and to han-
dle larger dataset have also been proposed.[4] After the
extraction of local descriptors, the similarity between
two images is computed for facial expression classifi-
cation. We observe that not only some fiducial points
but also some responses from certain Gabor filters are
more distinctive than others in discriminating different
facial expressions. Instead of using the simple sum of
local similarity values at each fiducial point, it is rea-
sonable for us to apply weighted sum to both responses
from different Gabor kernels and local descriptors at
different points. Many statistical methods have been
applied to the EBGM method for searching the opti-
mal weights between fiducial points, which include Lin-
ear Discriminant Analysis(LDA)[5][6], Support Vector
Machine(SVM)[7][8] and neural networks[11]. From
the viewpoint of combining classifiers, they can be re-

garded as performing the output fusion on the bank
of Gabor filters.[9][10] If we extract a further distinc-
tive vector from the Gabor jet at each point, further
improvements on accuracy are available. Direct classi-
fication of the feature vector constructed from all local
descriptors of each image might cause over-fitting, due
to the curse of dimensionality. We consider a two-
stage classifier for facial expression recognition, which
applies base classifiers on all fiducial points individu-
ally to estimate the optimal weight of response from
different Gabor kernels and then the fusion of their
outputs is calculated by a second-stage classifier to fi-
nally obtain the classification support. Especially, we
use SVM in both the base classifiers and the second-
stage classifier for its good generalization ability.

In Section 2, we introduce briefly the architecture of
our two-stage classifier. In Section 3, numerical exper-
iments are made to investigate the performance of the
proposed method. Comparisons with other methods
are also made. Concluding remarks and comments on
our future works are given in Section 4.

2 SVM-based Two-stage Classifier for

Facial Expression Recognition

Our major purpose is to find a optimal classifier on
local descriptors gathered from EBGM. Therefore, we
will omit the introduction of EBGM and focus the ex-
planation on the development of classifier on obtained
local descriptors. We let q(n) be the n-th image vec-
tor in a set of N images Q = {q(n)|n ∈ {1, · · · , N}}.
z = {zn|n ∈ {1, · · · , N}} is the set of class labels
with zn ∈ {1, · · · , C} being the label of the n-th
image vector. C is the number of all classes. We
extract M fiducial points for the n-th image manu-
ally or automatically, whose coordinates form the set

{(x
(n)
m , y

(n)
m )|m ∈ {1, · · · , M}}. Local descriptors at

fiducial points are extracted by a Gabor bank of K fil-
ters, G = {Gk|k ∈ {1, · · · , K}} in Ref.[3], where the
element at coordinate (x, y) of the k-th filter reads,

Gkxy =
exp

[
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which is a complex sinusoid centered at frequency
(ωkx, ωky) and modulated by a Gaussian envelope, as
shown in Fig.1. σkx and σky are the standard devi-
ations of the elliptical Gaussian along x and y. The
second term inside the bracket makes the Gabor ker-
nel DC-free to improve the robustness against bright-
ness variation. A Gabor jet is defined as the vector of
Gabor response for the m-th fiducial point, whose k-th
element is the convoluted result between the image and

the k-th Gabor kernel under offset (x
(n)
m , y

(n)
m ), i.e.,

u
(n)
mk =

∑

x

∑

y

q
(n)

x
(n)
m −x,y

(n)
m −y

Gkxy. (2)

q
(n)
x,y is the intensity at pixel (x, y) of the n-th image.

(a.) Real part (b.) Imaginary part

Fig. 1: A Gabor kernel.

Since the feature vector constructed from all local
descriptors of each image is in general of a longer length
than the size of the training set, direct classification
of this feature vector might cause over-fitting, due to
the curse of dimensionality. We consider a two-stage
classifier, whose diagram is given in Fig. 2. The weight
of responses from different Gabor kernels are optimized
by first-stage classifiers, the fusion of whose outputs is
computed by the second-stage classifier to produce the
classification support.

1.) For the n-th image, EBGM is used to search

optimal coordinates {(x
(n)
m , y

(n)
m )} for all fiducial points

by performing local searches inside a neighboring area
of a starting point next to the ground truth. Detailed
explanations on EBGM can be found in Ref.[1] and [3].

2.) For the located m-th fiducial point, its Gabor jet

is calculated and normalized to unit length, i.e., u
(n)
m =

[|u
(n)
mk|/

√

∑

k |u
(n)
mk|

2|k ∈ {1, · · · , K}]T . The magnitude
normalization of Gabor jets improves the robustness
against light and contrast variations.

3.) Gabor jets from different training data at the

m-th fiducial point form a Gabor bunch {u
(n)
m |n ∈

{1, · · · , N}} to train the m-th max-win SVM classifier

at the first stage. In the testing phase, Gabor Jet u
(n)
m

is fed into the trained max-win SVM classifier which
outputs v

(n)
m = [v

(n)
md |d ∈ {1, · · · , D}]T with D being

the output dimensionality.
4.) Outputs for the n-th image from all M classi-

fiers can be reorganized in a decision profile V(n) =

[v
(n)
m |m ∈ {1, · · · , M}]T , which is vectorized and sent

to the pairwise SVM classifier for classification.
Different kinds of combiners on the fusion of deci-

sion profile have been proposed, which can be clas-
sified as non-trainable and trainable combiners[9].

Fig. 2: Block diagram for proposed two-stage
classifier.

Average-fusion and max-fusion, two commonly used
non-trainable combiners, are defined as:

average − fusion : o
(n)
d =

1

M

∑

m

v
(n)
md , D̂ = D, (3)

max − fusion : o
(n)
d = maxmv

(n)
md, D̂ = D, (4)

respectively. o(n) = {o
(n)

d̂
|d̂ ∈ {1, · · · , D̂}} is the clas-

sification support from the combiner. Different from
the usual weighted average fusion,

o(n) =
1

M

∑

m

wmv
(n)
md , D̂ = D, (5)

we consider a generalized weighted average fusion, i.e.,

o(n) = wV̂(n), (6)

where V̂(n) = [[v
(n)
m ]T |m ∈ {1, · · · , M}]T is the vector-

ized form of V.

Various statistical classifiers are applicable to the
second-stage classifier to calculates the optimal fusion
matrix w of the decision profile. In both stages of clas-
sifiers, we take SVM whose purpose in a two-class prob-
lem is to maximize the margin between two classes, or
equaivalently, to search for w that minimizes the fol-
lowing objective function:

Lp = {
1

2
wTw −

∑

n

αn[z∗n(wT V̂(n)
m + w0) − 1]}, (7)

where {αn|n = 1, · · · , N, αn > 0} are the Langrange
multipliers and z∗n takes 1 for zn = 0 and −1 for zn = 1.
Detailed explanations on SVM can be found in Ref.[7].

When extending the two-class SVM to the multi-
class version, a Max-Win multi-class SVM adopts the
one-against- rest strategy, while a Pairwise one takes
the one-against-one approach. We use the Max-Win
multi-class SVM for the first stage classifiers because
it produces continuous output. Pairwise multi-class
SVM has been used in the second stage of our method
because it provides better performance, based on nu-
merical data which is not shown in the present paper.
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Fig. 3: Two kinds of multi-class SVM: Max-Win
SVM and Pairwise SVM.

3 Numerical Experiments and Discus-

sions

We focus on the performance comparisions between
the proposed method and other fusion methods. The
single stage versions of classifiers will also be compared.
The Japanese Female Facial Expression (JAFFE)
Database [2] is adopted, which includes 213 images in
total. The goal of recognition is to classify them into
neutral face or one of six elemental facial expressions
suggested by Ekman et al.[12], i.e., happiness, anger,
fear, disgust, sadness and surprise. We normalize these
images through the alignment of both eye positions for
later comparisons with appearance-based SVM. Some
normalized samples are given in Fig. 4. All images are
resized to 100 × 120 pixels.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4: Some normalized samples that are used in our
numerical experiments from the JAFFE database. (a)
Neutral (b) Happiness (c) Anger (d) Fear (e) Disgust
(f) Sadness and (g) Surprise.

Fiducial points are manually landmarked in our ex-
periments for both the training and testing dataset. 52
selected fiducial points is given in Fig.5, with 30 first-
tier points (marked in crossing symbol) and 22 second-
tier points (marked in circles). First-tier points are
independently located while second-tier points are cal-
culated from the positions of its neighboring first-tier
points by taking centering or crossing points. We refer
to the case of using LDA as the second-stage classifier
as LDA-fusion, while we name the case of using SVM
as SVM-fusion. Further, methods of applying SVM di-
rectly to the feature vectors from raster-scanned pixels
or from the Gabor jets at all fiducial points of each im-
age are referred to as appearance-based SVM method,
stacked Gabor jet based SVM method, respectively.

To evaluate the performance quantitatively, we de-
fine a recognition rate as

rc =
1

N

N
∑

n=1

δ(zn, z∗n) (8)

Fig. 5: Location of selected fiducial points. Cross-
ing symbols are for first-tier fiducial points and
circles for second-tier fiducial points.

where δ(x, y) is the Kronecker delta. z∗n is the esti-
mated label value. Due to the limited size of training
dataset, the recognition rate on the training data is
1.0 or near 1.0 for almost all cases. Therefore, we will
only give the results on testing dataset and mainly fo-
cus on the comparison of their generalization ability to
untrained testing data. Numerical experiments have
been performed on 15 randomly selected training sets
with size N varying from 44 to 100. For each N , a pair
of two mutually exclusive sets was created, one with N
images for training, and another with 213− N images
for testing. In total, 15 pairs of training and testing
datasets are used in our experiments and their results
are summarized as follows:

Fig. 6: Recognition rate rc on the testing dataset
for the appearance based SVM method, the
stacked Gabor jet based SVM method and the
SVM-fusion method. The proposed SVM-fusion
achieves the best performance in recognition.

1.) In Fig.6, recognition rate rc is plotted as a func-
tion of N , the size of training set, for three methods,
i.e., the appearance-based SVM method, the stacked
Gabor jet based SVM method and the SVM-fusion
method. Comparing with the appearance-based SVM,
the proposed method significantly increased the ac-
curacy of recognition by including explicit position-
matching of fiducial points. We also note that rc from
the two-stage SVM is about 3.1 points higher than that
in the stacked Gabor jet-based SVM method on aver-
age.

2.) Recognition rates rc under different fusion

455



methods are compared in Fig.7. Average-fusion(AVE-
Fusion), Max-fusion, LDA-fusion, and the proposed
SVM-fusion have been tested. We found that SVM-
fusion has the highest accuracy of recognition, which
is considered as a result of the better generalization
ability of SVM when comparing to LDA.

3.) In above experiments, we use linear kernels in all
SVM implementations. In Fig.8, a comparison is made
between SVM-fusion with a linear kernel and a Gaus-
sian RBF kernel, i.e., φ(xi, xj) = exp(−γ|xi − xj |

2).
We take γ = 0.1 for this figure. For small train-
ing datasets nonlinear version may cause overfitting
which damages its ability of generalization, while with
enough training samples the nonlinear SVM-fusion
outperforms that using a linear kernel.

Fig. 7: Recognition rate rc on the testing dataset
under different fusion methods.

Although only one sample set for each size of bunch
has been tested, we still conclude that the proposed
method has better performance, because the proposed
method outperforms other methods for all sizes of test-
ing datasets we have tested.

4 Conclusions

We have proposed a method to enhance fiducial-point
based recognition of facial expressions by estimating
optimal weights on both different Gabor kernels and
different fiducial points. We achieved this goal by de-
veloping a two-stage classifier. Max-win multi-class
SVMs have been used as the base classifiers for pro-
ducing continuous output and a pair-wise multi-class
SVM has been applied for output fusion. Numerical
experiments on manually landmarked fiducial points
verified the efficiency of our proposed method in fa-
cial expression recognition. Further numerical experi-
ments on the robustness against the localization error
of EBGM will be made in our future works. We will
also consider the possibility of including bagging for
base classifier selection and utilizing the decision tree
to organize base classifiers for further improvements.
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