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Abstract

Shape matching plays an important role in many ap-
plication fields. In this paper, we propose a novel
rotation invariant 3D shape descriptor based on Ha-
damard transform and spherical harmonic transform. In 
our method, a 3D model is represented as a collection of 
spherical functions to preserve shape information as 
much as possible, and the shape similarity is directly 
defined by the difference of the character functions of 3D 
models. Retrieval experiments show that our method 
performs better than many other existing 3D matching 
methods based on spherical harmonics. 

1. Introduction 

Over the past decade, the problem of 3D shape match-
ing has been intensively studied in computer vision
research due to its relevance to a variety of application 
fields. These include, among others, robot vision, 
autonomous navigation, automated inspection and meas-
urement, virtual reality, and retrieval of 3D objects based 
on shapes. The most common idea of matching 3D 
shapes is to establish correspondences between the query 
and target models [1], and then to define similarity 
measure in terms of distances between corresponding
points. Unfortunately, however, the establishing of cor-
respondences is a difficult and time-consuming task that 
needs to be performed on a model-pair-wise basis. This 
has motivated a large body of research in the area of 
shape descriptors: the space of models is mapped into a 
vector space with fixed dimensions [2, 9, 11], and the 
measure of similarity between two models is defined as 
the distance between their corresponding descriptors. 
This approach has the advantage of addressing the cor-
respondence problem on a model-wise basis, allowing
for the computation of the descriptors in an offline proc-
ess.

With the studies of using spherical harmonics (SH) to 
extract rotation invariants of spherical functions and 
progress in fast discrete spherical harmonic computation 
[6], many methods first represent a 3D shape as either a 
spherical function or a voxel grid, and then extract their 
rotation invariants by spherical harmonic transform [3, 4, 
8, 12]. Some primary properties of 3D models are natu-
rally spherical functions [2, 11]. If we use the rotation 
invariants of these primal properties as shape descriptors, 
one challenge is that the useful information is limited, 
and then their discriminabilities of 3D models is not 
good as expected. 

The idea to strengthen the discriminability is to extract 
several groups of rotation invariants of different spheri-
cal functions derived from 3D models so that the 
descriptor conveys shape information more than those 
extracted from only one spherical function. Many meth-
ods adopt this idea [8, 12]. The problem here is that 
different components have different effects to the shape. 
Therefore, it is difficult to determine the weight of each 
component of the rotation invariants.  

Unlike the methods introduced above, in our method,
a 3D model is considered equivalent to its character 
function, and so the dissimilarity of two models can be 
regarded as the difference of their character functions.
The character function value is defined to be one on the 
model and zero otherwise. After a quantification process, 
we obtain a set of spherical functions by using Hadamard 
transform along radials from the origin. It is evident that 
all the spherical functions in the set contribute evenly to 
the difference of character functions and they are con-
tinuous to the surface perturbation. To enhance the
robustness of the spherical harmonic transformation, we 
use the anisotropic scaling technique to normalize the
3D-model. 

In this paper, we present a new 3D shape descriptor
based on Hadamard transform and spherical harmonic 
transform. In this method, a 3D model is firstly repre-
sented as a collection of spherical functions to preserve 
shape information as much as possible, and then rotation 
invariants are extracted.   Retrieval experiment results 
show that our method performs better than many other 
existing 3D matching methods which are also based on 
spherical harmonics. 

2. Shape Representation and Similarity 

2.1 Model representation by spherical functions 

First we review the mathematic definition of Ha-

damard transform. The Hadamard matrix HN of order N,

where N is a positive integral power of 2, is a symmetric 

square matrix defined as 
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with 
1 1H . The Hadamard transform maps a 

N-dimension array g to another N-dimension array 

Nh H g . Since the elements of HN are regularly ar-

ranged with only two entries , the Hadamard 1
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transform can be calculated quickly through the algorithm 

called Fast Hadamard Transform [7].  

Figure 1. The process of constructing spherical 

functions. (a) A 3D model in a ball. (b) Rectangle 

wave function , ( )f r  on a casting ray. (c) 

, ( )f r is digitalized. (d) The Hadamard frequen-

cies of . (e) All the Hadamard 

frequencies form a spherical function vector. 
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Then f  on a casting ray with the direction ( , )  de-

fines a rectangle wave function , ( )f r . In practice, a 3D 

model is volume finite and we can put it in an envelope 

ball  with the radius R. Hence (0, )B R

( , )supp [0, ]f R  for all ( , ) , and , ( )f r  can be 

characterized with an array , where  0 1 2 1
{ , , , }Ng g g g
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Then its Hadamard transform  forms a 

spherical function vector as 

2Nh H g

( , )  are taken over all the 

directions:  

0 1 2 1
( , ) ( ( , ), ( , ), , ( , ))Nh h h h .

Figure 1 shows the process of constructing the spheri-

cal function vector. The property of Hadamard transform 

assures that the L2-distance between two character func-

tions f and f’ can be approximately represented the 

L2-distance between their spherical function vectors h

and h’.

2.2 Rotation invariants and similarity measure 

According to the theory of spherical harmonics, a 

spherical function ( , )f  can be decomposed as the 

sum of its harmonics: 

0

( , ) ( , )
l

m

lm l

l m l

f a Y ,

where , 0,1, , , , , 1,lma l m l l l,  are the coef-

ficients in frequency domain. It is proved that the

summation 
2

l

l

m l

lmA a is a rotational invariant. In prac-

tice, the Fast SHT method is used for deriving the 

coefficients in the first B frequencies by sampling a 2B

2B grid per latitude and longitude for a spherical function 

[6]. Given a 3D model M, it can be featured by its rotation 

invariants: 

2
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Here  is the spherical harmonics coefficients de-

fined by spherical harmonic decompositions: 

,k lma
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where 0 1 2 1
( , ) ( ( , ), ( , ), , ( , ))Nh h h h  are a 

series of spherical functions of M as defined in section 2.1. 

For two models M and M’, the shape distance between 

them is measured by L2-distance of their features: 

2
2

, ,
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k l
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,

,

where , , 'k l k lA A  are rotation invariants for M and M’

respectively. 

2.3 Anisotropic normalization 

In many applications, a model and its image under a

similarity transformation are considered to be the same. 

Though our method of feature extraction is rotation in-

variant, we need to normalize the models with respect to 

the translation and scale before extracting the rotation 

invariants. In general methods, models are normalized in 

an object coordinate by using the center of mass for the 

translation, and the root of the average square radius for 

the scale. Here we adopt the optimal anisotropic scale 

normalization [5], which will improve the representation 

ability of the features and take advantage of assigning 

importance of anisotropy.  A model is decomposed into 

an anisotropy vector 1 2 3( , , )M M M

M and an iso-

tropic model 
~

M  by anisotropic scaling. We compute 

the feature vector ~

M

v of the isotropic model 
~

M .  As 

shown in figure 2, the model M can be represented by a 
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new feature vector 
~{ , }M

M

v . Then we can define the 

measure of similarity between two models Q and M as: 

~ ~ ~ ~

22

( , ) 2( )( )M Q
M Q M Q

D M Q v v v v .

If =1 , then ( , )D M Q  is the L2-difference between 

the vectors 
~ M

M

v and ~ Q
Q

v . More generally,  can 

be treated as a constant representing the importance of 

anisotropy information in the context of shape matching. 

Figure 2. A model is decomposed into an isotropic 

model and an anisotropy by the anisotropic scal-

ing. The model feature is represented by the 

anisotropy and the rotation invariants of the iso-

tropic model. 

There is still another reason why we make the anisot-
ropy rescaling before extracting rotation invariants. If the 
model is just scaled by the root of its average square ra-
dius, the max distance of its extent to its origin may be 
very large. To ensure that all the models are enclosed in 
the repository, the envelope ball need to be very large, 
and the margin volume between the envelope ball and the 
convex hull of the model will consume too much storing 
space in the computation. After the rescaling by anisot-
ropic normalization, almost all the isotropic models in 
the repository can be enveloped in a ball with radius R=2
excluding some extreme cases (eg. an insect model with 
very long antennas), and the proportion of the margin 
space in the envelope ball is not so high as in the case of 
anisotropic models (as shown in figure 3). 

Figure 3. An anisotropic model (left) requires a 
large envelope ball and a large portion of the en-
velope ball is margin. The envelope ball of its 
isotropic model (right) can be chosen smaller. 

3. Results

The method is implemented for experiments to show 

its performance in 3D retrieval. Specifically, every 

model was normalized in size by isotropically rescaling 

it so that the average distance from the points on its sur-

face to the center of mass is 0.5. The length of Hadamard 

transformation is 32. The spherical harmonic  transfor-

mation is computed on a 64 64 spherical grid, and the 

first 16 rotation invariants are computed and reserved for 

our descriptor. As a result, the descriptor is a  16 32 

dimensional array from the spherical functions and a 

triplet of isotropic scalar information. The similarity dis-

tance is the L2-difference between the vectors 

~ ~ and M Q
M Q

v v  (here =1  ). In order to test the 

effectiveness of the proposed method, we designed a

series of shape matching experiments on the database 

provided by the Princeton Shape Benchmark (PSB) [10]. 

3.1 Results on robustness

In the first experiment, we test the robustness of our 
dissimilarity measure to transformations and perturba-
tions of 3D models. Specifically, fifty models are 
randomly selected from the PSB. We design the experi-
ments from three aspects to test the robustness: 

1) Translation: Translate the origin of the coordinates 

for a small bias d from the centroid of the 3D model; 

2) Rotation: Rotate the 3D model by a random angle;

3) Perturbation: Perturb each vertex randomly by d

along its normal direction. 

We compute the relative error of the transformations by

v v

v
,

where v and v  are the shape descriptors of the original 

model and the transformed model respectively. Let’s

denote the average value and max value of  as 

max,ave  respectively. The test results are shown in 

Table 1.  

Table 1. Results for the robustness testing 

Tests  Results

d 0.01 0.02 0.05 

Translation 

ave 0.0138 0.0354 0.0863

ave 0.0907 
Rotation Error

max 0.1540 

d 0.01 0.02 0.03 

Perturbation 

ave 0.0084 0.0193 0.0463

3.2 Retrieval results 

In order to evaluate the performance of the shape simi-

larity measure, we design experiments performing 3D

model retrieval on the PSB database. Figure 4 shows
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4. Conclusionsome of the retrieval examples.  We randomly select a 

model in the database as the query, and then our system 

returns a list of outputs ranking on the degree of similar-

ity to the input (because the query model in each 

retrieval test is still from the PSB database, the most 

similar model is itself). We can find that the first several 

models in the retrieval list are really shape-like to the 

query model in most cases. Especially, many classes of 

3D models with complex structures, such as potted 

plants, bicycles, etc, have good retrieval results by using 

our retrieval scheme. 

In this paper, we present a novel 3D shape descriptor 

based on Hadamard transform and spherical harmonic 

transform. The similarity measure of the descriptor is 

derived directly from the L2-distance of character function 

of 3D models. The proposed descriptor is robust and

rotation invariant. It can describe 3D models of complex 

structures. The anisotropic scaling normalization before 

extracting rotation invariants can improve the shape rep-

resentation ability of the proposed descriptor.  

References 

[1] P. Besl and N. Mckay: “A Method for Registration of 3-d 

Shapes,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol.14, no.2, pp.239-256, 1992. 

[2] B. Horn: “Extended Gaussian Images,” Proceedings of the 

IEEE, vol.72, no.12, pp.1671-1686, 1984. 

[3] M. Kazhdan, B. Chazelle, D.P. Cobkin, et al: A Reflective 

Symmetry Descriptor,” Proceedings of European Confer-

ence on Computer Vision, pp.642-656, 2002. 

[4] M. Kazhdan and T. Funkhouser: “Rotation Invariant

Spherical Harmonic Representation of 3D Shape Descrip-

tors,” Proceedings of Symposium on Geometry processing,

pp.156-165, 2003. 

[5] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz: “Shape

Matching and Anisotropy,” ACM Transactions on Graphics,

vol. 23, no. 3, pp. 623–629, 2004. 

Figure 4. Some retrieval examples. 

We compared the classification performance of the 
proposed method with many other previous methods 
based on spherical harmonics. Classification perform-
ance was measured using precision-recall plots, which 
give the percentage of retrieved information that is rele-
vant as a function of the percentage of relevant 
information retrieved. Precision-recall plots of five 
methods are shown in Figure 5. We can see that the pro-
posed shape descriptors (HSH) performs better than the 
Extended Gaussian Image (EGI) [2], the Spherical Ex-
tent Function (EXT) [11], the Robust definition of 
Spherical functions (RSF) [8], and the Radialized 
Spherical Extent Functions (REXT) [12]. 

[6] P.J. Kostelec, D.K. Maslen, et al: “Computational Har-

monic Analysis for Tensor Fields on the Two-sphere,”   

Journal of Computational Physics, vol.162, no.2, 

pp.515-534, 2000. 

[7] M.H. Lee and M. Kaveh: “Fast Hadamard Transform on a 

Simple Matrix Factorization,” IEEE Transactions on 

Acoustics, Speech, and Signal Processing, vol.34, no.6, 

pp.1666-1667, 1986. 

[8] Y. Liu and J. Pu, G. Xin, H. Zha, et al: “A Robust Method 

for Shape-based 3D Model Retrieval,” Proceedings of the 

12th Pacific Conference on Computer Graphics and Appli-

cations, pp.3-9, 2004. 

[9] R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin: “Match-

ing 3d Models with Shape Distributions,” Proceedings of 

the International conference on Shape Modeling and Ap-

plications, pp.154-166, 2001. 

[10] Princeton Shape Benchmark (PSB):  

http: //shape.cs.princeton.edu/benchmark/ 

[11] D. Saupe and D. V. Vranic: “3D Model Retrieval with 

Spherical Harmonics and Moments,” Proceedings of the 

23rd DAGM-Symposium on Pattern Recognition, pp. 

392-397, 2001. 

[12] D. V. Vranic: “An Improvement of Rotation Invariant 

3D-shape Descriptor Based on Functions on Concentric

Spheres,” IEEE International Conference on Image Proc-

essing, pp.757-760, 2003.

Figure 5. Precision-recall curves of some shape 
descriptors on PSB database. 

399


