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Abstract

We propose an algorithm for extracting facial features ro-

bustly from images for face recognition under large pose

variation. Rectangular facial features are retrieved via the

by-products of an embedded Hidden Markov Model (HMM)

which decodes an observed face image into a state sequence.

While an HMM is able to segment images into features at

a fixed pose, multiple HMMs are trained for each individ-

ual to robustly extract features under large pose variation.

Using the extracted features of each individual, appearance

models based on subspaces are constructed for face identifi-

cation and verification. The effectiveness of the proposed ap-

proach is validated through empirical studies against numer-

ous methods using the CMU PIE database. Our experiments

demonstrate that the proposed approach is able to extract

facial features robustly, thereby rendering superior results in

identification and superior performance in verification under

large pose variation.

1. Introduction

Face recognition is one of the most active research areas in

computer vision with numerous applications including iden-

tification which matches an image against a set of registered

images in a database for unique label, and verification which

confirms whether the claimed identity of an given image is

true or not. Numerous face recognition algorithms have been

proposed and a thorough review on this subject can be found

in [10]. Generally speaking, these algorithms can be catego-

rized into holistic and feature-based approaches. While the

holistic methods, e.g., the Eigenface [9] and Fisherface [1]

methods, have demonstrated their potentials in face recogni-

tion, they do not work well when the pose of a test image

varies significantly from the ones registered in the database.

Diametric to the holistic approaches, algorithms based on

Hidden Markov Model (HMM) [6] [5] [7] [2] [4] exploit the

fact that facial features can be observed in a sequential or-

der even under appearance variation caused by in-plane/out-

of-plane rotation or alignment error. In [6] a face pattern

is divided into several overlapping, horizontal strips and

these sub-images are modelled by a one-dimensional HMM

model. Following [6], better identification results were

achieved by using the coefficients of the two-dimensional

discrete cosine transform (2D-DCT) as feature vectors [5]

instead of the pixel intensity values. The one-dimensional

HMM was extended to the pseudo two-dimensional HMM

[7] that, as a compromise of computational complexity as

well as model capability, consists of a vertical top-to-bottom

one-dimensional Markov chain with super states and each

super state in turn contains a horizontal left-to-right one-

dimensional Markov chain. Further improvements on top of

[7] were obtained by using the 2D-DCT representation [2],

and a variation of [7] with lower computational complexity,

the embedded HMM, was reported in [4].

While recent findings have demonstrated the success of

these HMM-based methods in face identification [2] at fixed

pose, these algorithms are not effective for face verification.

Given an image, a trained HMM always finds a state se-

quence that best accounts for the observations with no regard

to whether the person of that image is an legitimate user or

an imposter. The reason being that face images consist of

similar features and a trained HMM simply strives its best

to account for the given observations. Despite its weakness

in verification, a learned HMM can robustly decode an ob-

served face image into states corresponding to certain facial

regions. As will be clear later in this paper, some of these

regions (states) correspond to visually salient facial features

(e.g., eyes and nose) while the others match other compo-

nents of a human face (e.g., foreheads and cheeks). Since lo-

calization of features plays a crucial role in any feature-based

method for face recognition, a robust facial feature extraction

is of great value for this as well as other applications. Moti-

vated by this, we develop an HMM-based method for extract-

ing facial features in spite of pose variation. We demonstrate

the merits of our algorithm by empirical studies against nu-

merous methods using with the CMU PIE database.

2. Embedded Hidden Markov Model

An embedded HMM consists of a Markov chain with su-

per states, and each super state in turn is modelled by another

Markov chain with a set of embedded states. While the su-

per states are used to model two-dimensional data along one
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direction (e.g., top to bottom for image analysis), the em-

bedded states are used to model along the other direction

(e.g., left to right for image analysis). Figure 1(a) shows

the structure of an HMM with 4 super states and 5 embed-

ded states. An embedded HMM is defined as the triplet

λ = (Π0, A0,Λ), with a set of super states S0, where Π0

is the initial state distribution, A0 is the super state tran-

sition probability matrix, and Λ = {Λ(1), Λ(2), ...,Λ(N0)}
contains a set of parameters of embedded HMMs, with each

Λ(k) = (Π
(k)
1 , A

(k)
1 , B(k)). The training algorithm is based

on the classic Viterbi algorithm and more details can be

found in [7] [3] [4].

3. Feature Extraction under Pose Variation

Face recognition methods such as [7] [4] have applied the

embedded HMMs to account for an observed image O with

a probabilistic measure, P (O|λ). In this work we utilize

the by-product of the embedded HMM, which segments an

observed image into regions based on state transitions via

the Viterbi algorithm [3] [4], to extract facial features. We

also use 2D-DCT coefficients to represent observation vec-

tors with sampling windows overlapped in both directions to

better model their neighborhood relations.

Although an embedded HMM is able to handle certain

amount of variation caused by pose variation, it is not able

to accurately account for observations undergoing large pose

change. To deal with such situations, we apply the K-means

algorithm to group face images of each person into K clus-

ters based on their poses. Within each cluster, an HMM is

trained to accurately account for observed images as their

pose variation is limited. That is, for every person in the

database we train K HMMs where each HMM is respon-

sible for decoding face images within limited pose variation.

Meanwhile, each trained HMM is able to segment each train-

ing image into facial regions based on the decoded state se-

quence. Figure 1(b) illustrates the decomposition of an ob-

served face image, into 4 super states and the corresponding

embedded states therein. Note that some of decoded states

match visually salient features such as eyes and noses, while

others represent facial components (e.g., cheeks). Pixels in

the same region are estimated with the same embedded state

as well as their super state, and each of these regions is con-

sidered as a facial feature. In our experiments, we have 20

features for each person (as a result of using 20 states in the

embedded HMM).

To extract sub-images for each feature of every person, we

first compute the center point, maximum width (w max) and

height (h max) of the corresponding facial regions decoded

by the trained HMMs. One example is shown in Figure 1(c).

Sub-images of each facial feature are extracted based on the

average of the width (w), height (h) and center points. For

each feature of each person, we perform principle component

analysis (PCA) on the extracted sub-images to obtain the ap-

proximated PCA subspace L. A feature can be modelled by

{w, h, H,L}, where H = {h1, h2, ..., hK} is a set of HMMs

that are responsible for segmenting images at different pose.

(a) (b) (c)

Figure 1. (left)Structure of an embedded HMM. (middle)Decoded

state of an image. (right)Their maximal width and height of a sub-

image for one feature.

4. Feature-Based Face Recognition

In our algorithm, the distance between an unknown person

with a given image I and person p is the average distance

between the features of I and the corresponding features of

person p. For each feature f , we obtain K sub-images Ifk

according to center points of facial regions segmented by K

different HMMs, as well as width w and height h of feature

f obtained in the training phase. We then compute the L2

distance, d(Ifk, Lfp), from Ifk to its projection on the sub-

space Lfp of feature f belonging to person p. Since in this

approach a PCA subspace is trained for each feature of every

person, we dub this approach as the individual PCA in the

rest of this paper.

As our training set encompasses face images taken from

different pose and each HMM is responsible for certain

pose with limited variation, for each feature f the distance

d(Ifk, Lfp) will be particularly small for one HMM. Hence

we segment an observed image with the state sequence of

the HMM with minimum average distance of all features.

The distance between a given face I with the person p can

be computed according to (1), where N is the number of fea-

tures for person p.

D(I, p) = min
k

1

N

∑

f

d(Ifk, Lfp). (1)

Given this distance metric D(I, p), the task of face recog-

nition can be implemented straightforwardly. For face iden-

tification, the true identity is the person p with minimum dis-

tance D(I, p). For face verification, a threshold is set based

on the distance D(I, p) with minimum recognition error.

5. Experiments and Results

We validate the proposed method with experiments using

the CMU PIE [8] data set which consists of images of 68

people acquired at 13 different poses in the yaw (left to right)

direction. These images are manually cropped and normal-

ized to 64 × 64 pixels as some shown in Figure 2. For each

person, 5 images (at pose {c, d, e, h, m}) are used for tests

and the remaining 8 samples are used for training. There

are 4 super states and 5 embedded states in each embedded

HMM. Each observation consists of 8 × 8 image blocks and

is represented by the first 10 2D-DCT coefficients. The ob-

servation windows overlap 5 pixels with each other in both

horizontal and vertical directions.
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To handle large pose variation, we train 3 embedded

HMMs for each person. The training images are clustered

automatically using the K-means algorithm. The method

that trains multiple embedded HMMs for each person for

recognition is referred as E-HMM-based Extraction I. As

the K-means algorithm does not usually cluster images ac-

cording to their pose perfectly, we also manually group train-

ing images to see whether better results can be achieved with

ground truth clustering results. This method is referred as E-

HMM-based Extraction II. In our experiments, the training

samples of each person are clustered into the sets according

to their pose such as {a, b, i}, {j, k} and {f, g, l} in Figure 2.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 2. Cropped and normalized faces of one person in the

CMU PIE database.

The baseline algorithm for our experimental comparisons

is the holistic Eigenface method [9]. Instead of construct-

ing one single PCA using images of all persons, we also

experiment with the idea of individual PCA subspace for

each person (referred as the Individual Eigenface method)).

For comparisons, we also evaluate the Embedded HMM

method [4] with the CMU PIE data set. For feature-based

face recognition, 20 facial features (resulting from 4 super

states and 5 embedded states for each super states) are ex-

tracted in our E-HMM-based Extraction I and E-HMM-

based Extraction II methods for experiments. In the Uni-

form Extraction approach, 20 facial features are uniformly

extracted from images as presented in Figure 3(a). In the

Manual Extraction method, we meticulously manually crop

4 facial features (two eyes, nose and mouse) from each face

image (so that the localization error is negligible) as shown

in Figure 3(b). For all feature-based approaches, we use the

distance metric (1) for experiments. The image size for the

Eigenface methods is 64 × 64 pixels, and each sub-images

of facial feature are normalized to 12 × 12 pixels for experi-

ments.

(a) 20 uniformly extracted facial features.

(b) 4 manually extracted facial features.

Figure 3. Extracted facial features by two methods.

We carry out two face recognition tasks: identification and

verification. The experiment results of face identification are

shown in the second column of Table 1. It is evident that

the accuracy is considerably improved by the use of multiple

subspaces in the Individual Eigenface and E-HMM-based

I, and E-HMM-based II methods with the corresponding

distance metrics. Note that the proposed algorithm (where

the features are automatically extracted) has almost the same

identification rate with the one in which features are manu-

ally extracted without localization error.

Table 1. Experimental results in identification and verification.

Identification Verification

Accuracy(%) Hit (%) ERR(%)

Eigenface 80.59 58.18 11.28

Individual Eigenface 96.18 77.09 5.73

Embedded HMM 99.71 4.71 28.25

Uniform Extraction 92.94 76.40 6.74

Manual Extraction 100 84.83 5.02

E-HMM-based Extraction I 98.53 86.47 4.35

E-HMM-based Extraction II 99.71 94.17 2.54

The results with verification experiments are shown in the

last two columns of Table 1. The third column is the hit

rate when false alarm rate (FAR) equals 1%, and the fourth

column is the equal error rate when false reject rate (FRR)

equals FAR. It is clear that our algorithms outperform the

other methods by large margins. The Receiver Operating

Characteristic (ROC) curves of the above-mentioned meth-

ods are shown in Figure 4.

Figure 4. ROC curves of the evaluated algorithms in verifi-

cation tests.

In both identification and verification experiments, the

method using manually cropped features (Manual Extrac-

tion) yields better results than holistic Eigenface and Indi-

vidual Eigenface methods, as well as the feature-based ap-

proach with features uniformly extracted (Uniform Extrac-

tion). Note that the identification is performed on a close set

and with no imposter rejection mechanism. The identifica-

tion task in this case is simpler and thus these methods have

smaller error rates in identification than verification tasks.

This is evident in the Embedded HMM method which has
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good performance in identification tests but very poor re-

sults in verification experiments. Surprisingly the proposed

algorithm (E-HMM-based Extraction I) whose facial fea-

tures are extracted automatically, outperforms the method

(Manual Extraction) with manually cropped facial features

in verification tests. The main reason is that our method ex-

ploits the merits of the individual embedded HMMs. In our

method test images of legitimate users are segmented consis-

tently with the training face images via the trained HMMs,

and thus the localization errors of extracted features are rel-

atively small (Figure 5). On the other hand for any imposter,

the localization errors of extracted features in a test images

will be larger since these HMMs were trained specifically for

each legitimate person in the database (Figure 5). The effect

of large localization error is subsequently amplified when

computing the distance of a test image to to a person p in

(1), while the localization errors for both legitimate users and

impostors are the same in the method with manually cropped

features. In other words, each HMM in our method is tuned

for each person and penalizes any impostors, thereby render-

ing better results in verification tasks. When the images are

manually clustered according to their pose without error, the

proposed approach (E-HMM-based Extraction II) achieves

the best results. This suggests that more elaborated clustering

algorithms other than K-means may be employed to further

improve our E-HMM-based Extraction I method.

Figure 5. Some results of extracted facial features using our

method. The first column shows the decoded states by our

embedded HMMs. The extracted features of an image in

training phase are presented in the first row. The extracted

features obtained in test phase for a legitimate user and an

imposter are shown on the second and third rows, respec-

tively. Note that we show only 5 among 20 facial features.

6. Concluding Remarks and Future Work

We have proposed a novel algorithm for extracting facial

features robustly with applications in identification and ver-

ification. The proposed method utilizes the decoded states

from an embedded HMM to extract rectangular features un-

der large pose variation. Individual subspace is constructed

for each feature to account for appearance variation, and the

associated distance metric helps in finding the best matched

feature in the training set. We have demonstrated the merits

of our algorithm in extracting facial features for identifica-

tion and verification experiments, with comparisons to nu-

merous methods. Owning to our person-specific feature ex-

traction method which results in small localization errors for

legitimate users and large ones for impostors, our algorithm

outperforms other methods even when features are manually

cropped with no localization errors.

The proposed method extracts rectangular features via the

embedded HMMs without utilizing shape information. Our

future work will incorporate the shape information of for fea-

ture extraction. We will also extend the person-specific fea-

ture extraction algorithm so that it can robustly extract facial

features of any face image.
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