
Harmonic Shape Histograms for 3D Shape Classification and Retrieval

J. Fehr, H. Burkhardt

Chair of Pattern Recognition and Image Processing

Albert-Ludwig-University

Freiburg, Germany

Abstract

In this paper, we present a novel approach towards 3D

shape recognition and retrieval using histograms of rota-

tion invariant local features. Features are extracted for ev-

ery point of voxelized 3D shape objects by use of functions

on spheres which are invariant towards rotation of the ob-

ject. The fast computation of the local features is performed

via convolution methods in frequency space. Histograms of

these features describe an object in terms of distributions

of local geometric properties such as orientation and an-

gle of edges, distances and convexity. Object classification

is performed by Support Vector Machines with histogram-

intersection kernels. In experiments on the Princeton Shape

Benchmark [1], our approach outperformed many existing

methods in several classification and retrieval tasks.

1. Introduction
Retrieval and matching of shape objects is a wide spread

problem with many applications in computer vision, CAD,

computer graphics and medicine. Many algorithms and var-

ious rotation invariant shape representations have been pub-

lished so far. Matching of two identical (under the group

of rotation, translation and scaling) shapes can be achieved

with high accuracy for most cases. On the other hand, the

more challenging, and practical relevant task of object clas-

sification/retrieval of more or less semantic classes with a

high intra-class variance is far from being solved. In this

paper we argue to focus more on local rather than global

features of shapes in order to enable classifiers to handle

higher order classification and retrieval tasks as presented

in the Princeton Shape Benchmark [1].

We restrict our brief overview of related work to meth-

ods for 3D shape classification based on rotation invari-

ant features using functions on spheres, and those which

performed best on the PSB. The very basic Global Shape

Histogram (SHAPEHIST) computes the distance for each

point on the shape to all other points on the shape and

stores the results in a histogram. Global Shell Histogram

(SECSHELL): [2] divide an object in 3D shells and sec-

tors located around the center of mass using Histograms

over the subdivisions as global object features. The Spheri-

cal Extent Function (EXT) [4] computes global rotational

invariant features as absolute values of coefficients of a

spherical harmonic approximation of the object. Radial-

ized Spherical Extent Function (REXT) [5] extends the

(EXT) approach to the spherical harmonic approximation

of the object’s inner structure on several concentric spheres

combined with PCA. The Spherical Harmonic Descriptor

(SHD) [3] is similar to (REXT). Light Field Descriptor

(LDF) [7] uses multiple 2D views of 3D shapes. Rotation

invariance is achieved by a collection of 100 2D views per

object, which are rendered orthogonal to a sphere contain-

ing the object.

All of these methods have in common that they try to model

an object shape at a global level which has the disadvan-

tage that the assumption that objects of the same class are

sharing the same base shape is not always adequate - es-

pecially when one considers more semantic groupings with

high intra-class variance. The (EXT),(REXT) and (SHD)

methods use spherical harmonic representations. In order to

gain rotation invariance, only the absolute values of the har-

monic coefficients are used for feature computation. This

neglects the entire phase information of the complex coeffi-

cients, which can cause ambiguous feature representations

and weaken separability.

2. Local Features
To overcome the existing drawbacks mentioned in the last

section, we propose harmonic shape histograms as local ro-

tation invariant features for object shape recognition. The

generation of these features follows three steps: first, the

3D shape model is rendered into a volume V , with voxels

v ∈ V and v = 1 inside the object contour and v = 0
outside. All objects are rendered to a fixed size, providing

scale invariance. Second, voxel-wise features are extracted

for the entire volume, and third, stored in a histogram over

each feature. For each object, feature-histograms are con-

catenated to a single 1D histogram.

2.1. 2-Point Features
2-Point Features are simple, yet powerful local shape fea-

tures. In many ways they could be considered to be the

local equivalent to global shape histograms. For each voxel
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v ∈ V all neighboring voxels with distance r inside the

object are counted. This rotation invariant feature Tr(v)
is derived by Haar-Integration over the spherical neighbor-

hood parameterized by the angles ϕ1 , ϕ2 and qϕ1,ϕ2 with

‖q‖ = r.

Tr(v) :=

π∫

0

−π∫

π

V (v + qϕ1,ϕ2)dϕ1dϕ2 (1)

This can be directly implemented via fast convolution with

the surface of a sphere Sr with radius r (Fig. 1):

Tr(v) := (V ∗ Sr)(v), with Sr(v) := δ(‖v‖ − r) (2)

The name ”2-Point” derives from the property that the fea-

Figure 1: 2-Point features: top,left: parameterization on the

sphere; right: convolution sphere for one voxel, bottom,

left: integration via convolution, the black areas indicate

voxels which are integrated. right: multiple spheres for the

histogram representation of one voxel.

ture encodes the pairwise relations of v and its neighbors

with distance r. This approach already leads to quite rea-

sonable results (see Fig. 2), which can be notably improved

by two minor extensions: first, so far we on only consider

voxels inside the shape - by applying a gauss filter G to

V before feature extraction, voxels close to the shape con-

tribute to the local histograms depending on their gaussian

weight. Second, in order to gain more control over the local

weighting, we introduce two arbitrary non-linear functions

fa and fb, which are applied to v and V :

Tr,fa,fb
(v) := fa(v) · (fb(G(V )) ∗ Sr)(v) (3)

Suitable choices for fa(x) and fb(x) were empirically

found to be simple mappings like x2, x3 or
√

x.

2.2. 3-Point Features
The 2-Point features provide useful local distance distribu-

tions and along with that some implicit local shape prop-

Figure 2: Example results of 2p features in a 2D xy-slice.

Top: slice scheme, original data, followed by results of fea-

tures with growing radii.

erties like thickness or convexity. But the local discrimi-

nation power is quite limited. For example, it is not pos-

sible to explicitly distinguish between edges and corners.

Since we are especially interested in such ’higher order”

properties, we extend the original 2-point approach to Haar-

Integrals over the degrees of freedom of the relation of three

points. This will increase the local discrimination power to

the needed extend. Going from two to three points appears

to be straight forward, but in fact this turns out to be quite

challenging. This is due the fact, that we now have to inte-

grate over three degrees of freedom (ϕ1, ϕ2, ϕ3) in order to

cover all possible constellations of three points (v0,v1,v2)

with radii r1 and r2 (fig. 3). With this third degree of

Figure 3: Parametrization of the 3-Point feature, for visual

simplification the special case of r2 = r1 is displayed.

freedom, our fast convolution algorithm can not be applied

anymore, but a direct computation would be too expensive.

To overcome this, we first consider that for a given center

voxel v0, all voxels which could possibly contribute to the

Haar-Integral, lie on the surfaces of two concentric spheres

with radii r1 and r2. We denote these spheres Dr1 and Dr2 ,

which are carrying the original data on the surface. Now

we expand these spheres in terms of spherical harmonics,

which provide an orthogonal basis for functions on the 2-

Sphere analog to the Fourier transform. So every spherical

function on a sphere can be represented by the sum of its

harmonics:

f(θ, φ) =

∞∑

l=0

l∑

m=0

almY m
l (θ, φ) (4)

where l denotes the band of expansion, m the components

for the l-th band and alm the harmonic coefficient. The
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transformation to harmonic representation of Dr1 and Dr2

can be computed efficiently via the dot-product :

D̂r(l, m) = Y m
l · Dr (5)

The harmonic representation now enables us to compute the

integral over all degrees of freedom very efficiently: First,

we consider rotation around ϕ3: All voxels contributing to

the integration over this angle, lie on a circle C on the outer

sphere Dr2 with its center on the extension of v1 and radius

rc (fig. 3). Due to the spherical harmonic addition theorem,

we can rotate the entire expansion to center C at the ”north

pole”. Now Haar-Integration over C on the sphere Dr2 can

be computed via left-convolution of Dr2 with C. We define

the left-convolution in the harmonic domain as Dr2 ⊗ C:

D̂r2 ⊗ (l, m) = 2π

√
4π

2l + 1
D̂r2(l, m) · Ĉ(l, 0) (6)

This has the nice property, that since for our case C is sym-
metric and reduced to a ”latitude” of Dr2 , all harmonic ko-

effitients Ĉ(l, m) are zero for m 6= 0 and equal to the as-
sociated Legendre polynomial P 0

l (cosα) for m = 0. This
way the left-convolution in the harmonic domain is reduced
to a simple point-wise multiplication with a scalar value for
each band of expansion. The other two degrees of rotational
freedom, φ1 and φ2, are then eliminated by the computation
of the dot-product between the harmonic representations of
the spheres Dr1 and Dr2 . This leads to the following fi-
nal formulation for three points case analog to the 2-Point
case:

T (v) := fa(v) ·
X

l

X

m

̂fb(Dr1)(l, m) · ( ̂fc(Dr2) ⊗ C)(l, m)

(7)

A gaussian filter G can be inserted in this formulation as

in the 2-Point case. Figure (4) shows a schematic overview

of the computation procedure, illustrating that the local 3-

Point features can entirely be computed via fast global con-

volution operations. Note, that for our features rotation in-

variance is achieved without totally neglecting the phase in-

formation, which is here implicitly preserved. The invari-

ance of our features is independent of the maximum band

of the harmonic expansion - it can be chosen depending on

the desired level of detail to be detected by the features.

3. Training and Classification
We use Support Vector Machines (SVM) [6] for train-

ing and classification. During training procedure, we

compute a large amount of 2 and 3-Point features

with various combinations from parameter space P =
{fa, fb, fc, r1, r2, r3, G}. We apply a Maximum Marginal

Diversity algorithm [9] to select the most discriminating

features. Then, we compute gray-scale histograms of

the derived feature responses and combine these to one

singe feature vector - the Harmonic Shape Histogram.
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Figure 4: Schema of the 3-Point feature computation.

SVM kernel parameters are determined via gridsearch over

the parameters using a ”leave one out” evaluation proce-

dure. All feature settings and parameters determined on the

training-set are then applied for classification or retrieval

tasks on the test-set. Due to the histogram representation of

the features, the usage of a Histogram-Intersection kernel

implying a L1-norm distance measure is straight forward

and empirically delivered the best results. Before kernel

evaluation, the feature histograms are normalized to mini-

mum and maximum values.

4. Experiments
Our approach was evaluated on the ”The Princeton Shape

Benchmark” (PSB) [1]. The PSB contains 1814 3D shape

models collected from various Internet sources, including

very different object types from fighter jets to chairs or hu-

man models. The objects are grouped to classes in four

different levels of semantic abstraction: base, coarse1,

coarse2 and coarse3. The distinguished classes with low

intra-class variance at the base level are combined to more

and more semantic classes at following levels. The results

published for the PSB (see Table 2) were presented mainly

as retrieval results. Direct classification results are only

known for the base level provided by a k = 1 nearest-

neighbor classifier (NN) (see Table 2). We performed three

different experiments: classification with SVMs, retrieval

with SVMs and retrieval using the NN framework provided

by the PSB. For the classification task (results see Fig. 1),

the SVM was trained on the training set and then applied to

the test set. A rejection class was used to handle classes in

the test set which are not part of the training set. In order

to produce somewhat comparable results in the SVM re-

trieval task, we used the training-sets only for feature- and

model selection as described in section 3. Then, we per-
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Features Base Coarse1 Coarse2 Coarse3

HSH2 73,78% 61,43% 63.07% 88.42%

HSH23 78.66% 51.4% 63.51% 86.99%

HSH23+SHD 80.27% 50.33% 65.6% 87.85%

Table 1: Results of our features with SVM classification on

the PSB test set.

Features Base level nearest neighbor

LFD 65.7%

HSH23+SHD 63.52%

REXT 60.2%

HSH23 59.8%

SHD 55.6%

EXT 54.9%

SECSHELL 54.6%

SHAPEHIST 22.7%

Table 2: Reference results of nearest neighbor classification

on the PSB. Taken from [1].

formed a leave-one-out procedure on the test-set. These re-

sults (see Table 3) can be compared to those in [1], since

this way the same information input is used to estimate per-

formance. Of course, comparing the results of a SVM with

a nearest-neighbor classifier (NN) might influence the in-

terpretation of feature performance - so in the last experi-

ment, we provide some NN results of our features (see Ta-

ble 2). We used the Histogram-Intersection kernel as dis-

tance measure for the nearest-neighbor classification. For

the experiments we extracted 223 2- and 3-Point Harmonic

Shape Histogram features (HSH), and computed 100 bin

histograms over each feature. Results were computed for

all tasks using only 2-Point (HSH2), only 3-Point (HSH3)

and combined 2- and 3-Point features (HSH23). Finally we

combined our local features with the global SHD features.

4.1. Discussion
For the previous retrieval results on the PSB, published in

[1] (see Table 2), the shape features were compared mea-

suring the retrieval performance by means of the n closest

samples in feature space (in terms of k = 1 Nearest Neigh-

bor). Even though this is appropriate for many retrieval

Features Base Coarse1 Coarse2 Coarse3

SHD 55.42% - - -

HSH2 60.75% 71.6% 78.83% 94.28%

HSH3 51.0% 53.1% 61.0% 83.79%

HSH23 68.36% 74.17% 73.43% 91.73%

HSH23+SHD 72.88% 79.38% 80.15% 93.27%

Table 3: Results of our features with SVM leave-one-out on

the PSB test set.

tasks, we stress that feature comparison has to consider the

appropriate distance measure (classifier) for each feature.

In our case, HSH performs very well using the NN measure

(Table 2), but the true performance is revealed by the use

of the SVM (Table 3). This is due to the high dimension-

ality of the HSH features and their local nature: different

shapes can have many very similar areas and only a few,

but very distinctive areas. On the other hand, not all fea-

tures can take advantage of the SVM, table (3) shows that

the SHD features even performed worse compared to the

NN approach. The classification results shown in Table (1)

can not be compared to any previous retrieval results pub-

lished for the PSB. Looking at the results for the different

levels of coarseness (semantic abstraction), all experiments

indicate that HSH2 is more suitable for classes of higher

abstraction levels than HSH23 or HSH23 + SHD. This

is not surprising since the high amount of detail encoded

by the edge driven HSH3 features is only distinctive for

classes at a lower level.
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