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Abstract 

Localization and segmentation of Optic Disk (OD) is an 
important prerequisite for automatic detection of Diabetic 
Retinopathy (DR) from digital retinal fundus images. 
Considerable research has been done to isolate OD with 
varying degrees of success but on a limited number of 
images. In this paper we propose a novel algorithm based 
on Independent Component Analysis (ICA) coupled with a 
modified Structural Similarity Index Measure (m-SSIM) 
for localization of OD. We have tested our method on 100 
normal retinal images (achieving 100 % success) and 232 
diseased retinal images (achieving 75% success), thereby 
demonstrating a significant improvement over two other 
existing methods. 

1 Introduction 

The brightest feature of a healthy digital retinal fundus 
image is the OD. It is approximately circular and meas-
ures around 1800 µm. Retinal vasculature originates from 
OD. Since the OD has characteristics similar to exudates, 
it is vulnerable to be detected as a false positive. Hence 
locating and segmenting OD accurately is an important 
task in automated detection of lesions of DR. Further OD 
localization helps to determine the location of macula and 
fovea. In the literature we find that the OD is localized 
based on the following properties: (a) It is the largest re-
gion that consists of pixels with the highest gray levels. 
(b) It is the area with highest variation of intensity of ad-
jacent pixels. (c) It is the convergence point of the blood 
vessels. 

Techniques in [1] and [2] exploit the first property, 
while [3] relies on the second one. These methods demon-
strate good results in normal retinal images where OD is 
the brightest. But in the presence of bright lesions similar 
to OD in the image, they result in incorrect OD localiza-
tion. Methods in [4], [5] and [6] exploit the third property. 
In these methods the segmented blood vessels are tracked 
to the point of their convergence. Foracchia et al. [7] 
builds a geometrical model of blood vessels and localizes 
the OD by simulated annealing. All these methods require 
preliminary segmentation of blood vessels, which by itself 
is a complicated task and the final results are dependent 
on the accuracy with which the blood vessels are seg-
mented. 

In this paper, we propose a novel approach of OD lo-

calization based on the similarity of the projection of 
candidate regions to the ICA basis space respectively.  In 
[11] it has been quoted that ICA performs significantly 
better using cosines as similarity measure than Euclidean 
distance. In this paper we have recommended a modified 
structural similarity measure (m-SSIM) and have illus-
trated that it outperforms cosines measure. Further we 
have demonstrated that (i) our method is robust when 
compared to the method prescribed in [6] and (ii) our 
method performs significantly better than the PCA based 
method in [8]. 

2 Preliminaries 

We briefly introduce ICA and SSIM here. 

2.1 ICA 

ICA finds structure in the multivariate data by exploit-
ing the higher order statistics. ICA has been successfully 
applied to face recognition problem [11]. The goal of ICA 
is to linearly transform the data so that the transformed 
variables are as statistically independent as possible. ICA 
defines a generative model for the observed multivariate 
data, which is typically given as a large database of sam-
ples. In the model, the data variables are assumed to be 
linear mixtures of some unknown latent variables, and the 
mixing system is also unknown. The latent variables are 
assumed to be non-Gaussian and mutually independent
and are known as independent components of the ob-
served data. These independent components can be 
obtained by ICA.  

The ICA method can be briefly formulated as follows: 
let S be the vector of unknown source signals and X be 
vector of observed mixtures. If A is an unknown mixing 
matrix, then the mixing model can be written as X = AS. 
The task is to estimate the independent source signals U 
by computing the separating matrix W that corresponds to 
the mixing matrix A using the following relation

U = WX = WAS    
First, the observed samples are whitened. Whitening

means that the observed variable x is linearly transformed 
to a variable v=Qx such that E[vv

T
]=I. This transforma-

tion is always possible and indeed it can be accomplished 
by PCA. Let us denote the whitened samples by Ζ. Then, 
we search for the matrix such that the linear projection of 
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the whitened samples by the matrix W has maximum 
non-Gaussianity of data distribution. The kurtosis of Ui = 
Wi

T
Z is computed and the separating vector Wi is ob-

tained by maximizing the kurtosis. 
      kurt(Ui) = |E{(Ui)

4
} – 3(E{(Ui)

2
})

2
|

  
Alternatively one could use a normalized variation of 

differential entropy called negentropy to measure 
non-Gaussianity. For an excellent treatise on ICA, readers 
are referred to [10].  We have used the FastICA algorithm 
[12] developed by Hyvarinen et al [10].  

2.2 SSIM 

Unlike Minkowski error metric that is based on point-
wise signal differences, the SSIM proposed in [9] captures 
the structural information in the image to provide a good 
approximation to perceived image distortion. The struc-
tural information are those attributes that represent the 
structure of objects in the image, independent of lumi-
nance and contrast. Structure comparison between two 
images is conducted after luminance subtraction and vari-
ance normalization. Specifically, we associate the two 
normalized images ( ) σµ− xxx  and ( ) σµ− yyy  with the 
structure of the two input images x and y, where µx and µy

are the luminance of the images x and y respectively and 
σx and σy are the contrasts of x and y respectively. The 
correlation between these is a simple and effective meas-
ure to quantify the structural similarity. Thus, we define 
the structure comparison function as  

  

where σxy is the covariance between x and y and i is a con-
stant used to avoid the instability when σyσx = 0. The 
SSIM is defined as s(x,y)=[l(x,y)]

a
. [c(x,y)]

b
. [st(x,y)]

c

where l(x,y) is the luminance comparison function given 
by  

l(x,y) =   

, the constant j being used to avoid the instability when 
µxµx+ µyµy = 0. 

c(x,y) is the contrast comparison function given by  

c(x,y) =  

, the constant k being used to avoid the instability when  
σx.σx+ σyσy = 0. 

 a,b,c are positive constants used to adjust the relative 
importance of the luminance, contrast and structure com-
ponents respectively.  The values of i, j, k and a, b,c are 
chosen as described in [9]. 

3 Proposed Method in Detail 

3.1 Step 1: Generating Basis Images for OD and 

non-OD regions 

Since the diameter of optic disc is in the range of

70-105 pixels in the retinal image of 640x480 pixels, 
manually cropped optic discs of size 110x110 were taken 
as the training images for the ICA algorithm.  

Due to the degradation in quality of contrast as we
move from the centre towards the boundary of fundus
image where the OD is present, the contrast of the training 
images is enhanced using the sigmoid function to clearly 
distinguish vessel convergence from OD background. Two 
examples in gray scale version are shown in Fig 1. Each 
training image is treated as a column vector of 12100x1 
dimensions and appended to form a single matrix of 
12100xN where N is the number of the training images. 
This matrix is then processed using the FastICA algorithm 
[12] corresponding to architecture I [11] (which considers 
the input optic disc images as a linear combination of sta-
tistically independent basis images, combined by an
unknown matrix) to obtain the ICA optic disc basis im-
ages . A sample of basis images is shown in Fig 2. 
Similarly we also obtain the non-OD basis images based 
on images taken from non-OD regions sample. 

3.2 Step 2: Identifying a set of candidate regions 

in Test Image 

      

                                                                

       

Figure 1. Two contrast enhanced OD templates 
from the set of training OD templates that is input

to the ICA algorithm 

               

  

Figure 2. A sample of OD basis images out-
put by ICA algorithm when the set of training 

OD templates was given as input. 
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By transforming the input RGB image to YIQ and HSV 
space we obtain Y and H components. Pixels with the
highest 5% intensity level (Y) are selected along with 
those pixels having the hue (H) in the yellow range. A 
clustering mechanism is then used to group these pixels 
into clusters, in which a pixel which qualifies as per the 
intensity and yellow hue criterion is assigned to a cluster 
depending on whether it is adjacent to any of the pixels 
belonging to that cluster. After all the pixels are assigned 
that way, a threshold is imposed to abandon a cluster in 
which the pixel count falls below the threshold limit (< 
200). The clusters which remain after this step qualify as 
the candidate regions for further processing. As the di-
ameter of optic disc is in the range of 70-105 pixels in the 
retinal image of 640x480 pixels, each candidate region is 
defined as a square of 110x110 pixels with the centroid of 
the cluster as the center. We denote the set of candidate 
regions as C1. 

3.3 Step 3: Computing m-SSIM 

We have proposed a modified structural similarity in-
dex measure (m-SSIM) which is a weighted measure. The 
basic SSIM values are weighted by the factors derived 
from the dot products of the test image with basis images. 

Definition: Let the set of ICA based basis images 
derived from the set of training images described earlier 
be denoted by B={B1,…, Bq}. Let the set of candidate re-
gions obtained from the test image be denoted by 
A={A1,…, Ar}. The structural similarity vector SS(Ai,B)  
of dimension 1x q is given by [s(Ai,B1) s(Ai,B2) . . .  
s(Ai,Bq)]  where s(Ai, Bj) is computed using basic SSIM. 
Then       

m-SSIM(Ai, B) =                 

3.4 Application of m-SSIM 

Among the candidates which have their similarity norm 
value with respect to the optic disc basis greater than their 
similarity norm value with respect to the non-optic disc 
basis, the candidate region having the maximum similarity 
norm value with respect to the optic disc basis is chosen as 
the optic disc region. 

4 Justification for modifying SSIM 

Here we elucidate the reasons to amend the basic SSIM 
proposed in [9]. The similarity that exists between the 
basis images is determined by computing the matrix of 
similarities between the basis images (using basic SSIM), 
a 5 x 5 submatrix (call it as M) of which is shown in Table 
1.  

Though M showed maximum value i.e. 1 all along the 
diagonal, it showed non-zero values elsewhere and some  
values significant enough i.e. values to the order of 0.4 on 
a scale of 0-1, to suggest considerable structural similarity 
between some of the basis images. This similarity existing 
between basis images, which by theory are independent, 

may affect the recognition performance of the proposed 
method. To overcome this, we performed an iterative ap-
plication of ICA and determined the matrix M of 
similarities between basis images, but of no avail. Hence 
there is a need to make the similarity measure more dis-
criminatory i.e. to search for ways of getting the ideal M 
which peaks along the diagonal while having all 
off-diagonal elements as zeros (or at least a negligible 
value close enough to zero). Towards this end we per-
formed the following experiments: 

Experiment 1. In this experiment we want to deter-
mine whether any non-OD region has significant 
similarity to OD basis images. We considered two 
non-OD regions viz a natural image patch (NP) and an 
exudate patch (EP). The similarity of NP and EP to OD 
basis images is computed and tabulated. A sample of this 
table is shown in Table 2. 

As is evident, the similarity measure shows low values 
throughout in both the cases. This indicates that the struc-
tural similarity approach is effective in rejecting the 
non-optic disc regions by allotting low values.  

Experiment 2: In this experiment we want to test the 
inter-class discriminatory power of SSIM against the in-
tra-class discrimination. A set of mixture images is 
generated  

by combining basis images B1, B2, B3 in a certain ratio, 
and the similarity of these mixtures  to the OD basis im-
ages B1, B2, B3, B4 and B5 is computed and shown in
Table 3.  

In Table 3 M1, M2 and M3 are mixed as:  
Mixture M1 – Optic Disc basis images B1, B2 and B3 

are mixed in the ratio of 50:40:10 
Mixture M2 – Optic Disc basis images B1, B2 and B3 

are mixed in the ratio of 20:60:20 
Mixture M3 – Optic Disc basis images B1, B2 and B3 

are mixed in the ratio of 20:30:50 

The similarity matrix in Table 3 faithfully shows peaks 
in similarity with the corresponding basis images more or 

 B1 B2 B3 B4 B5 

B1 1.000 0.313 0.448 0.401 0.422 

B2 0.313 1.000 0.383 0.332 0.375 

B3 0.448 0.383 1.000 0.372 0.397 

B4 0.401 0.332 0.372 1.000 0.341 

B5 0.422 0.375 0.397 0.341 1.000 

 B1 B2 B3 B4 B5 

NP .12 .15 .13 .30 .27 

EP .23 .17 .20 .17 .17 

Table 1.  Similarity between basis images B1 – B5

Table 2.  Similarity of NP and EP to basis  

images B1-B5 
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less proportionate to the mixing ratios, for eg., upon mix-
ing basis images B1, B2, B3 in the proportion of 
0.2:0.6:0.2, we find that the peak similarity is with respect 
to the basis image B2 but annoyingly the similarity values 
with respect to basis images B1 and B3 are not convinc-
ingly large enough compared to similarity values with 
other basis images like B4 and B5 for a clear cut demarca-
tion or discrimination based on similarity values alone. 
That is, the similarity measure provides good discrimina-
tion when it comes to separation of optic disc and 
non-optic disc classes (i.e. good  inter-class discrimina-
tion) but poor discrimination when it comes to images 
within a class (i.e. poor intra-class discrimination).  

For the same mixtures tabulated in Table 3, the similar-
ity matrix weighted with dot products is computed and is 
shown in Table 4. Upon retaining only those elements of 
weighted similarity matrix which are above a set threshold 
(say 10

-3
), it is clear that matrix of similarities M now has 

the desirable properties close to the ideal. Hence we pro-
posed m-SSIM as a weighted measure, weighted by the
factors derived from the dot products of the test image 
with basis images.                                                  

5 Experimental Set Up, Results and Dis-

cussions     

We implemented the proposed approach in MATLAB 
(version 7) on a P4 machine (3.00 GHz). Our database 
included 300 diseased images and 150 normal images of 
resolution 640 X 480. We selected 82 OD and non-OD 
templates of size 110 x 110 for training. The H and Y 
range for identifying candidate regions was chosen from 
the interval [0.1 0.15] and [0.75 1] respectively. The 
threshold limit for cluster count was set to 200.  

We tested our method on 100 normal retinal images, 
achieving 100% success and on 232 diseased retinal im-
ages, achieving 74% success. The PCA based approach
proposed in [8] performs equal to ICA on normal images 
but the success percentage is only 60 on diseased retinal 
images. In [6] the OD is determined as the intersection of 
set of brightest pixels and set of pixels in the neighbor-
hood of convergence of blood vessels. Here the brightest 
candidate regions are located by undoing the effect of vi-
gnetting. This procedure reports 80% success on diseased 
retinal images but is highly sensitive to a threshold value 
that is stabilized by illumination equalization to yield pix-
els inside the optic nerve [6]. Inspite of this preprocessing 
of illumination equalization, a small change in this thresh-
old drastically reduces the success percentage under 20 
whereas our method is more robust and performs uni-

formly well with same H and Y value, reporting 74% 
success. Also we compared the standard cosines measure 
with our m-SSIM. We found that on diseased retinal im-
ages from our database, cosines measure reported only 
65% success. A sample of OD localization results are 
presented in Fig 3 where the black square localizes OD 
and the red squares are other candidate regions. Fig 3(a) is 
a result on a normal retinal image. Please note that in Fig 
3(b), there are many exudates similar to OD but our algo-
rithm localized OD correctly. PCA based method failed in 
this case (see Fig 3(c)). Also ICA based on cosines meas-
ures failed to localize OD correctly in this case(see Fig 
3(d)).   

            

                                     

Presence of illumination imbalance could pose prob-
lems for OD localization. For e.g. our method failed to 
localize OD correctly in Fig 3 (e) because the OD is not 
bright and some area along the boundary are bright. Our 
presumption is that the OD is the brightest region in a 
normal fundus image. But with the advancement in tech-
nology and availability of superior quality fundus cameras, 
without any loss in generality we may assume that such 
images will not result in practical situations. 
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   (a)                                 (b)     

   

              (c)                                (d) 

  

                         (e)

                                                                          

                         

                                                                                                                         

 Figure 3. A sample of results: (a) OD localization
on a normal retinal image by our method.  (b)  OD 

localization on a diseased retinal image by our method. 
(c) OD localization on the same diseased retinal image 

by PCA.  (d) OD localization on the same diseased 
retinal image by ICA method based on cosines meas-

ure. (e) failure case of our method 
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