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Abstract

We introduce an algorithm for synchronizing two video
sequences recorded by stationary cameras. It extends
common RANSAC-based approaches that recover either a
homography or a fundamental matrix from putatively
matched spatial features in two images. In our algorithm,
we detect space-time interest points in each sequence
which represent events such as objects changing direction,
and putatively matching points from each sequence are
determined. A nested RANSAC framework on these puta-
tive matches is then used to firstly recover the frame offset
and ratio of frame rates of the two sequences, then either
a homography or a fundamental matrix relating the two
views, depending on the type of motion contained within
the sequences. No camera calibration or object tracking is
required. Real sequences containing motion either on a
plane or in free space are synchronized and it is demon-
strated that this approach is successful in recovering the
ratio of frame rates, the frame offset, and the homography
or fundamental matrix relating the two sequences.

1 Introduction

An increasing number of computer vision applications
are being developed that process multiple videos recorded
simultaneously from different locations. Some applica-
tions of multiple view video analysis include comparisons
of human motion [12], virtualized reality [6] and recon-
struction of non-rigid scenes [14]. Video synchronization
is essential to ensure consistency in the structure recov-
ered in these applications.

Synchronization involves finding the temporal rela-
tionship between two or more video sequences. Most
literature focuses on a linear model, where there is a tem-
poral offset

�
between the sequences, and the ratio of

frame rates is denoted by α . This can be expressed
mathematically by:

,' ∆+= tt α (1)

where t and 't are frame numbers of frames from each
sequence recorded at the same instant in time.

Synchronization can be performed in hardware, for
example, by embedding a timestamp in the video stream
or sending a synchronization signal to cameras [6] though
this can be costly and must be set up prior to recording.
Alternatively, software algorithms can recover synchroni-
zation from visual cues.

Video synchronization algorithms can be divided into
two classes: direct alignment and feature-based alignment.
Direct alignment algorithms use pixel intensity data from
frames of each video sequence for synchronization, for

example, by comparing pixel intensities between se-
quences [2,15]. Feature-based synchronization algorithms
use detected features for synchronization, for example,
frame-to-frame object motion, or object trajectories
throughout an entire sequence.

Many feature-based synchronization methods employ
multiple view geometry methods. Reid and Zisserman
[13] synchronized two short videos by recovering the ho-
mography of the ground plane and finding the frame offset
that minimized the reprojection errors of moving points on
the ground. Caspi and Irani [2] synchronized two se-
quences recorded by cameras with fixed internal
parameters filming at a known ratio of frame rates. They
used a RANSAC-based approach [3] to recover the frame
offset and either a homography or fundamental matrix
from multiple trajectory correspondences, aiming to
minimize geometric reprojection error. Carceroni et al. [1]
synchronized N video sequences (for N ≥ 2) recorded by
weakly calibrated cameras by establishing sets of tentative
synchronized frames via the epipolar constraint, from
which they recovered α and

�
values for all pairs of the

N video sequences.
A fundamental matrix based algorithm by Pooley et al.

[11] synchronized two sequences captured by moving
cameras. The synchronization parameters were estimated
via the Hough transform on a reparameterized parameter
space of α and

�
, then refined using a gradient descent

method to minimize the reprojection error.
Some algorithms use an algebraic measure for synchro-

nization rather than a geometric error. Wolf and Zomet
[16] constructed a measurement matrix from unmatched
point trajectories in two sequences recorded at the same
frame rate by affine cameras, using singular values be-
yond the expected rank of this matrix as a measure of
synchronization. Tresadern and Reid [14] used a similar
approach to also recover the frame rate ratio of two se-
quences where multiple trajectory correspondences were
known. Rao et al. [12] used singular values of a measure-
ment matrix to synchronize two sequences recorded by
weakly calibrated perspective cameras. They synchronized
two sequences of the same action performed by different
people at the same location by computing a
frame-to-frame mapping between sequences.

Rather than using frame-to-frame motion or object tra-
jectories for synchronization, Yan and Pollefeys [17] used
space-time interest points [8] as features for synchroniza-
tion. Space-time interest points are reviewed in Section 2.
Their algorithm recovered the temporal offset of two se-
quences recorded at the same frame rate from the
distribution of interest points in each sequence. At each
integer frame offset, they correlated the histograms of the
distribution of interest points; the offset yielding the high-
est correlation score was declared the actual frame offset.

190

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

5-6



Laptev et al. [9] employed space-time interest points for
detecting periodic motion in a single sequence. They used
a RANSAC-based approach to firstly propose a period
length and then fit a dynamic fundamental matrix from
two proposed periodically equivalent point pairs.

Our algorithm synchronizes two sequences recorded by
stationary cameras with fixed intrinsic parameters.
Space-time interest points are detected in each sequence,
and putatively matching interest points are proposed. Then,
a two-step nested RANSAC approach firstly proposes a
temporal model, i.e., α and

�
, then recovers the best

spatial model for the proposed temporal model. The spa-
tial model is either a homography for sequences
containing planar motion, or a fundamental matrix if free
object motion occurs. In contrast to Yan and Pollefeys'
space-time interest point-based algorithm [17], our algo-
rithm matches points between sequences and recovers the
spatial model relating the two sequences. Our algorithm is
similar to the periodic motion detection algorithm by
Laptev et al. [9] in that a temporal model is proposed and
a spatial model is fitted. However, we synchronize two
views of the same event recorded at different frame rates
instead of searching for constant-rate periodic motion. We
present results for synchronizing real video sequences and
demonstrate that our approach is successful.

2 Space-time interest points

Space-time interest points are locations in video se-
quences where a large variation in pixel intensities exists
in space (within each frame) and time (between frames).
They may be considered to be the equivalent in video se-
quences of spatial interest points in still images, e.g.,
Harris corners [4]. Interest points are often detected
where and when an object has a significant force applied
to it or where objects appear to merge or separate. Occlu-
sions and dis-occlusions may also generate interest points.
In most cases, interest points detected due to these events
in one sequence would be detected at a different time and
location in the other sequence, or they may not be detected
at all. However, it is expected that the following step to
determine putative matches will not match these interest
points generated by occlusions, and even if putative
matches were generated, the later RANSAC step would
classify these points as outliers because they would not be
consistent with the temporal or spatial models recovered
from a set of interest points arising from actual events.

To detect space-time interest points, a second moment
matrix � is constructed for each pixel location (x,y) in each
frame t of a sequence S:

where L� is the first order derivative in the � dimension of
the Gaussian smoothed video sequence, computed via:

and g(x,y,t;� 2
,� 2

) is a separable Gaussian kernel with in-
dependent spatial and temporal variances, denoted by � 2

and � 2
respectively, given by:

Then, interest points are located at positive local maxima
of the corner function H:

where Laptev suggests using k � 0.005. Positive local
maxima of H correspond to (x,y,t) locations where the
three eigenvalues of � are significant.

Full derivations of the detection of space-time interest
points are given by Laptev [8].

3 Determining putative matches

Putatively matching space-time interest point pairs are
proposed by firstly computing a descriptor for each inter-
est point, and then determining putative matches from the
descriptor vectors. Local jets are vectors computed from
the derivatives of image intensity gradient information
around a point [7,10]. We constructed descriptor vectors
from local jets computed over 3 spatial scales and 3 tem-
poral scales. At each spatio-temporal scale, the local jet
was computed from Gaussian derivatives up to order four,
providing 34 derivative values. Hence, the multi-scale
descriptor contained 306 elements. This approach follows
that of Laptev and Lindeberg [10].

Laptev and Lindeberg proposed a number of distance
measures for comparing these descriptors [10]; of these,
we used the Euclidean distance between two descriptor
vectors. A recursive winner-takes-all approach was used to
determine putative matches, where at each instance, two
points, xi and x’j, were declared as a putative match if they
had the greatest scalar product of any pair of points con-
taining either xi or x’j. All matches involving xi and x’j

were then removed from further consideration, and the
process repeated until no further matches remained.

4 Recovering the synchronization

RANSAC [3] is a random sampling method for fitting a
model to a data set containing outliers. One example is
recovering a homography from a set of putatively match-
ing points [5], whilst determining which matches are
inliers and which are outliers. Our synchronization algo-
rithm employs two nested instances of RANSAC. The
first, outer instance recovers the temporal model, whilst
the inner instance estimates either a homography or a
fundamental matrix, for sequences containing planar mo-
tion and free motion respectively. Our algorithm is
summarized as follows:

1. Firstly, two pairs of putatively matching
space-time interest points are randomly selected.
Let ti and t'j denote the temporal components of
two putatively matching space-time interest
points. For each selected putative match, a tem-
poral component pair, a 2D point (ti, t'j), is
constructed. Fig. 1(a) shows an example of the
distribution of temporal component pairs. A
straight line is then fitted to the temporal com-
ponent pairs of the two selected putative matches,
yielding a proposed gradient ,α and the
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y-intercept
�

, from Eq. (1).

2. Next, the inliers for the proposed temporal model
are determined. For each temporal component
pair, we compute the perpendicular distance to
the previously computed straight line. Putative
matches with temporal component pairs lying
within a threshold distance from this line are
temporal inliers as they are consistent with the
values of α and

�
proposed in Step 1 (see Fig.

1(b)). The threshold is determined empirically.
For each proposed temporal model, RANSAC
requires the number of inliers to be counted to
determine the best model. Our algorithm does
not return the number of temporal inliers; rather,
it uses the temporal inliers to initialize another
instance of RANSAC to fit a spatial model.

3. We use RANSAC to fit a spatial model to the
spatial components of the temporal inliers. To fit
a homography, 4 temporally inlying putative
matches are randomly selected and a homogra-
phy estimated from the spatial components of
these points. Alternatively, a sample of 8 tempo-
ral inliers can be selected so as to recover a
fundamental matrix via the linear method. Fur-
ther details are provided by Hartley and
Zisserman [5]. A second distance threshold, in-
dependent of the threshold used in Step 2, is used
to determine inliers from reprojection errors,
again determined empirically. The RANSAC in-
stance in this step may propose many spatial
models for the given temporal model; the spatial
model with the greatest number of inliers is re-
turned.

4. The fourth step is to determine the number of
inliers for the proposed temporal model and best
corresponding spatial model. As only temporal
inliers are used to fit the spatial model, the inliers
to the recovered spatial model are a subset of the
temporal inliers. Let the inliers to the spatial
model be known as spatio-temporal inliers. In
Fig. 1(c), it is shown that not all temporal inliers
are spatio-temporal inliers. We use the number of
spatio-temporal inliers as the number of inliers
for the temporal model proposed in Step 1.

This process is repeated until the RANSAC algorithm
determines that sufficient iterations have been completed.

The temporal model and corresponding spatial model with
the most spatio-temporal inliers are then returned.

5 Results

The algorithm was tested on pairs of sequences re-
corded by stationary cameras with fixed internal
parameters. In the shadow series of sequences, the
shadow of a moving object was projected onto a textured
planar surface, and a homography relating the two views
was recovered along with the temporal model. The park
sequences contained free motion in 3D space, hence a
fundamental matrix was recovered in place of a homo-
graphy. Each video was recorded at 15 or 30 frames per
second and contained between 125 and 540 frames; the
resolution of each frame was 200 × 150 pixels. The 200
most significant space-time interest points were detected
in each sequence. In detecting these points, the video se-
quence was convolved with a Gaussian with independent
spatial and temporal variances. For all sequences, we used
the temporal variance � 2

= 2; for the shadow sequences,
we set the spatial variance to � 2

= 2, whereas for the park
sequences, we used � 2

= 4.
The synchronization results shown in Table 1 confirm

that this algorithm provides results comparable to manu-
ally synchronizing video sequences. Manual
synchronization results are based on events such as a ball
bouncing; hence, the frame offset can only be determined
to ±0.5 frame. In Fig. 2, a frame from Sequence 1 is recti-
fied such that it appears to have been viewed from the
same location as Sequence 2. This visual comparison
demonstrates that the recovered homography is accurate.

Fig. 3 shows synchronized frames from pairs of se-
quences containing free motion. The epipolar geometry
has been recovered from the space-time features whose
spatial components are illustrated in each view; epipolar
lines corresponding to these points are overlaid in the
other frame from each sequence. In one view of each se-
quence pair, the other camera is visible, and the recovered
epipole is located close to the imaged location of the cam-
era, indicating that the recovered epipolar geometry is
satisfactory.

The results show that the algorithm presented here is
successful in accurately recovering the temporal model
and either a homography induced by a plane or a funda-
mental matrix relating the two views. We expect that the
localization of the epipoles as shown in Figs. 3(c) and (d)
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Figure 1: The process of determining spatio-temporal inliers from putative matches. (a) Firstly, temporal compo-

nent pairs are constructed for all putative matches. (b) A straight line is fitted to two randomly selected temporal
component pairs, and the temporal inliers determined. (c) The temporal inliers are used to fit a spatial model, from
which spatio-temporal inliers, a subset of the temporal inliers, are determined.
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would be improved if the features used to recover the
fundamental matrix were more evenly distributed spa-
tially.

The time taken to synchronize the shadow6 to
shadow8 sequences using a MATLAB implementation
of this algorithm averaged between 4 and 5 minutes per
pair of sequences on a 3GHz Pentium IV with 1GB of
RAM. These sequences contained between 125 and 150
frames. On average, the detection of the space-time inter-
est points consumed approximately 94% of the
computation time.

6 Discussion

In the process of estimating the spatial and temporal
models, the temporal model is proposed first, and then the
spatial model is recovered from the set of temporal inliers.
In sequences containing a significant number of outliers,
this ordering is important. As the probability of selecting
an outlier in a sample set increases with the size of the
sample set, it is desirable to choose a smaller sample set.
In this algorithm, this is achieved by firstly fitting a tem-
poral model that can be proposed from only two putative
matches, rather than a spatial model which requires at
least four matches.

A further point of interest is how the inner model is af-
fected when the sample used to propose the outer model
contains an outlier. It is expected that if a temporal model
is proposed from a pair of putative matches where at least
one match is an outlier, there will not be many temporal
inliers. In fact, there may be insufficient temporal inliers
from which to propose a spatial model, in which case the
temporal model is immediately discarded. If we were to
firstly attempt to recover the spatial model, then there are
a number of possible temporal models that could be pro-
posed from the spatially inlying points (as it is assumed
that all points used to propose the spatial model are spatial
inliers). Hence, it is likely that the algorithm would pro-
pose many temporal models from the spatial inliers
proposed from an incorrect spatial model, which is clearly
inefficient.

It is noted that the accuracy of the estimated spatial
model is heavily dependent on the estimated temporal
model at each RANSAC iteration. Whilst an inaccurate
temporal model may produce many temporal inliers, these

(a) shadow7 view 1 (b) shadow9 view 1

(c) shadow7 view 2 (d) shadow9 view 2

(e) shadow7 rectified
view 1

(f) shadow9 rectified
view 1

Figure 2: The result of synchronizing sequences
containing planar motion. The pair of images (a) and
(c) were recorded at the same instant in time, as were
the images (b) and (d). The rectified views shown in
(e) and (f) are the result of applying the recovered ho-
mography to the images in (a) and (b) such that those
images appear to have been viewed from the same
viewpoints as (c) and (d) respectively.
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Figure 3: The result of synchronizing sequences
containing free object motion. In each image, the spa-
tial locations of inlying space-time interest points are
displayed, and epipolar lines are overlaid correspond-
ing to the spatial locations of inlying space-time
interest points in the other sequence. In (c) and (d), the
camera that captured frames (a) and (b) can be seen
atop a tripod; the recovered epipole is close to the ac-
tual camera location. The pair of images (a) and (c)
were recorded at the same instant in time, as were the
images (b) and (d).

Table 1: The results show that the recovered frame rate
ratio, α̂ , and frame offset, ∆̂ , are comparable to the
manually recovered frame rate ratio and frame offset,
denoted by α and ∆ respectively. The shadow se-
quences contain motion on a plane, and the park

sequences contain free motion.

Sequence pair α α̂ ∆ ∆̂

shadow6 1 1.0060 0.0 0.0513

shadow7 1 0.9993 0.0 –0.0543

shadow8 1 0.9983 0.0 0.0146

shadow9 1 1.0010 0.0 0.5776

shadow10 0.5 0.4958 94.0 94.9566

park1 1 0.9999 –10.0 –9.8060

park5 1 1.0019 0.0 –0.3589

park9 1 1.0001 24.5 23.7990

park12 1 0.9989 105.5 105.8763

park15 1 1.0006 –29.5 –29.2951

193



temporal inliers are unlikely to yield a consistent spatial
model, hence the number of spatio-temporal inliers is ex-
pected to be low. This is not a problem, as due to the
nature of RANSAC, it is expected that there are sufficient
correct putative matches such that the correct temporal
and spatial models will be recovered in at least one itera-
tion.

In some applications, e.g., video surveillance, the cam-
eras may be mounted in a fixed position and the spatial
model may already be known. Hence, it is clearly not nec-
essary to recover the spatial model as described in Section
4. In this case, the algorithm could be modified to ensure
that the putative matches satisfy the supplied spatial
model. Then, the method described in Section 4 would be
simplified such that only the temporal model is recovered
via Steps 1 and 2.

Another synchronization algorithm based on space-time
interest points was developed by Yan and Pollefeys [17].
Their algorithm synchronizes a pair of sequences with a
known ratio of frame rates, by constructing a histogram of
the number of interest points occurring in each frame of
each sequence. Then, the synchronization is recovered by
correlating the two histograms at each integer frame off-
set; the offset yielding the highest correlation score is
returned as the recovered frame offset.

A potential drawback of their algorithm is that it does
not attempt to find matching space-time interest points
from each sequence. Rather, it assumes that an event
viewed by multiple cameras will produce a similar num-
ber of space-time interest points in corresponding frames
of each video sequence. However, view-dependent events
such as occlusions and dis-occlusions may generate inter-
est points at different time instants of the two video
sequences, or interest points in one video sequence only.
This may significantly affect the correlation score, and
hence the recovered frame offset. Our algorithm is more
robust in that interest points detected for such events are
unlikely to be declared as putative matches, and further,
because these events are unlikely to occur at the same
time and place in both sequences, they will not satisfy the
temporal and spatial models and will hence be discarded.

A possible case where our algorithm may fail includes
sequences containing repeated or periodic motions, which
often generate many similar space-time interest points in
both sequences. Consequently, the number of outliers
would be excessive and incorrect temporal and spatial
models may be returned by the RANSAC fittings. This
problem is known to be common to all video synchroniza-
tion algorithms [1,12–17].

7 Conclusion

It has been shown that our proposed algorithm suc-
cessfully synchronizes pairs of video sequences without
requiring object tracking. The accuracy of the recovered
frame offset and frame rate ratio are comparable with
manual synchronization, and it has been confirmed visu-
ally that the recovered homography or fundamental matrix
relating the two sequences is accurate.
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