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Abstract

This paper deals with a recently proposed non-

parametric approach to camera calibration, which is ap-

plicable to any type of sensor design. Currently, no relative

quantitative performance data is available for this method.

This paper addresses this issue, by providing a comprehen-

sive evaluation with respect to the standard planar calibra-

tion technique in the literature. Experiments are conducted

on simulated and real data, with the firm conclusion that the

generic calibration method has the capability to outperform

the standard parametric approach for imaging systems with

significant distortion. The results provide important practi-

cal information for the vision community at large.

1 Introduction

For many applications, from mobile robot localisation to

security, there is an increasing trend towards using non-

traditional imaging modalities. This has seen a more

widespread use of cameras which are often collectively

referred to as omnidirectional. In comparison with regu-

lar pinhole cameras, they offer the primary advantage of a

greater field of view. This has raised the issue of calibrat-

ing such imaging devices. Calibration essentially refers to

discovering the relation of the 3D Euclidean world to the

2D image space [1]. This paper evaluates a powerful new

generic non-parametric calibration strategy that is applica-

ble to any type of sensor. The goal of this paper is to inform

the practitioner on the precision of this new technique, with

experiments being conducted with reference to the standard

pinhole camera calibration (including lens distortion).

Calibration of a perspective camera amounts to finding

a linear mapping in projective space encoding the internal

camera parameters such as focal length and principal point.

However, many real camera systems cannot be fully de-

scribed by this linear or pinhole model. For example, all

conventional lenses exhibit some degree of non-linear lens

distortion. For accurate calibration, this non-linearity must

also be incorporated into the modelling. There are many

well established techniques that achieve this [2, 3, 4]. How-

ever, as this lens distortion increases (as the angle of view

increases) the distortion modelling in the above techniques

begins to fail. This in turn has seen the emergence of many

higher order parametric modelling techniques [5, 6], which

are suitable for use up to fish-eye distortion levels.

There are also some central projection systems whose ge-

ometry cannot be described using the conventional pin-hole

model. Catadioptric systems [7] are an example, where a

wide field of view and a unique projection center are at-

tained by combining a hyperbolic mirror with a perspective

camera. The modelling of such a system is proposed in [8],

as a mapping to a sphere and then to a plane. This is further

extended in [9] to include radial distortions. Also, circular

field of view sensors such as fisheye and circular mirrors

have been calibrated [10], through a generalisation of the

divisional model and polynomial eigenvalue solution em-

ployed in [11]. One can note two things from these works:

that they all employ parametric calibration techniques, and

that for each different sensor type, a different parametric

representation is required. This latter issue can become a

problem for the practitioner as it raises the issue of which

modeling technique is best to choose. It also constrains sen-

sor design to a predefined set.

All of the above methods attempt to model the passage

of the light rays through the camera optics with a paramet-

ric model. An alternative non-parametric camera model

that associates a ray in 3-space with each pixel in the im-

age was introduced by Grossberg [12]. This generic cali-

bration idea is powerful as it can be applied equally well

to all types of cameras, from pinholes, fish-eye and om-

nidirectional to non-central cameras such as stereo sys-

tems. Recently, a more general approach was developed by

[13, 14, 15]. In this general method, three views of a planar

grid are required but the location of planes is not required

a-priori. This calibration technique has not as yet received

significant attention within the vision community. Several

researchers have used this calibration technique [16], but

mainly for the purpose of extending the calibration tech-

nique to the motion estimation task.

This paper proposes to benchmark the performance of

this generic central calibration technique [13] with respect

to the well known and understood perspective camera cali-

bration technique of Zhang [17]. Our goal is to inform the

practitioner, and the broader community, of the level of pre-

cision to be expected with the generic calibration strategy.

Currently no relative performance data has been reported in

the literature. As the comparison is conducted with respect

to a radially distorted perspective model, this is the imag-

ing modality that is utilised. Favorably, due to the general
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properties of the generic technique, the same performance

levels can be equally extended to other imaging modalities.

The analysis is conducted with real and simulated data, and

the results are compiled in terms of noise sensitivity, the re-

moval of nonlinear distortion, and motion estimation tasks.

Our results clearly show that the performance of the generic

calibration technique is effectively independent of the non-

linearities in the imaging sensor, and thus it outperforms the

existing standard method for sensors incorporating signifi-

cant distortion.

2 Calibration Methods

The work of [2] and [3] was the first that fully exploited

multiple views of planar grids taken from unknown view-

points. These works describe how to obtain linear con-

straints on the intrinsic parameters of the camera from a

minimum of two homographies between the scene and im-

age planes. Mainly due to an executable distributed by

Zhang1 and an Open Source implementation within the

OPENCV library2, this plane-based approach has become

a standard tool for calibrating cameras. Thus, as this tech-

nique is widely used, and its performance has been well

characterised, we use it to benchmark the performance of

the generic calibration technique. Lens distortion is in-

cluded in this technique by including a polynomial model

in a final full nonlinear estimation process, often referred to

as bundle adjustment.

2.1 Generic calibration method

Generic camera calibration is a non-parametric cam-

era calibration method that calculates the ray direction

associated with each pixel point (pixel level calibration).

The technique has recently been proposed by Sturm and

Ramalingam[13]. By circumventing the need for paramet-

ric camera models it is rendered generally applicable, even

capable of catering for discontinuous cameras (something

that was not previously possible). The method can be used

for both central cameras, as used in this paper, and for non-

central cameras (cameras for which the pixel rays do not

converge at a single point).

The generic method aims to simply determine the ray di-

rection corresponding to each image pixel. This is achieved

by determining the points seen by a pixel on each of three

differently orientated grids. Once each ray direction has

been calculated, it is stored in a look up table that maps to

the correct image pixel. The process can be summarised as

follows:

1. Take a minimum of three initial images of a calibra-

tion grid in different orientations. Additional images

are also required in various orientations to completely

cover the image

2. For each pixel, determine the location seen by that

pixel on each grid via homographic interpolation

3. Linearly estimate the effective centre of projection

of the camera, and the orientations of the calibration

grids, using this data and the known constraints
1http://research.microsoft.com/-zhang/calib
2http://www.intel.com/technology/computing/opencv/index

4. Refine the orientations of the initial grids and the ray

directions in a bundle adjustment stage

5. Estimate the orientations of the additional grids using

geometric constraints followed by bundle adjustment

6. Store the ray directions (as Plucker matrices) in a look-

up table

The density of the feature points on the grids is an impor-

tant factor in the accuracy of the calibration. For a pixel

level calibration, if the feature points are not dense enough,

then the result will display systematic errors resulting from

the bias of the interpolation towards the periphery of the

image. In order to satisfy the requirement for a dense fea-

ture set, techniques from the domain of structured light can

be employed to directly encode grid location [18]. This is

done via active grids, whereby a series of 22 greyscale pat-

terns (Gray coded binary and sinusoidal) are consecutively

displayed on a flat screen TFT monitor. The location on

the active grid seen by each camera pixel is calculated from

the intensity of that pixel in the images of the patterns. A

noise analysis of the locations decoded from the active grids

found that the inherent noise in the method is comparable

to the effective detection accuracy of standard feature de-

tectors.

3 Experiments

The results are primarily compiled over simulated data.

These findings are subsequently validated on real image

samples. For the simulated data, comparative experiments

are designed to characterise the sensitivity to noisy input

data, and to assess the nonlinearity removal with respect to

increasing lens distortion or field of view. With real images,

three samples with increasing field of view are used. These

are similarly analysed for residual distortion levels and an

additional motion estimation experiment.

3.1 Simulated data

Using simulated data, two experiments are conducted.

Firstly, the sensitivity to noise of the generic calibration

technique is compared with the sensitivity to noise of the

standard method. Increasing levels of noise are induced in

the input data and then each calibration technique is im-

plemented. This process is conducted 50 times for each

level of noise, whereupon the statistics shown in Fig. 1

(top) are computed. Note that for the generic algorithm the

noise causes millimetre error in the ray-plane intersections.

This millimetre noise was computed by a backprojection of

the noisy pixel data onto each plane. As with the standard

method, the effect of noise in the generic method is shown

to be linearly proportional.

The second experiment aims to investigate the precision

of the calibration in terms of removing nonlinearities such

as lens distortion. Increasing levels of lens distortion are

simulated according with an equidistance projection func-

tion: r = fθ. This is a common distortion function that

also allows distortion to be related to the field of view. This

model is manipulated to give an increasing field of view

from 30o to 150o. This model is chosen to be different from

the one used in the standard calibration algorithm. The dis-

tortion residuals following calibration are compiled over 50
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Figure 1. Mean and SD of noise sensitivity (top) and

distortion residuals (bottom) for standard method

(dashed) and generic method (solid).

Figure 2. Three levels of distorted images used.

iterations with 1000 random points. Fig. 1 (bottom) shows

the resulting statistics. As expected, for high distortion the

residuals on the standard method increase. However, the

generic algorithm maintains a low mean and standard de-

viation throughout. This level of performance can be ex-

pected regardless of the imaging modality.

Note that forming distortion corrected images is a 3-

space operation within the generic calibration approach. As

each pixel maps to a ray, distortion correction amounts to

determining the intersections of these rays with a synthetic

image plane. In our experiments, the synthetic plane is

chosen as the plane perpendicular to the principal ray that

passes closest to the grids used in the calibration. As the lo-

cation of this plane affects the scale and location of the cor-

rected image points, an isometry is applied to map these in-

tersected points to their known correct positions. The isom-

etry is linear and thus does not affect the performance of the

generic method for capturing non-linear distortions.

3.2 Real data

As mentioned, three real images are analysed for each

calibration method with respect to distortion residuals, and

one image is analysed with respect to a motion estimation

task. The input images are shown in Fig. 2, giving an indi-

cation of the levels of distortion present. These were taken

at three different zoom levels using a Nikon CoolPix 4500

camera fitted with a FC-E8 fisheye converter (field of view

183o);

Following calibration with both the standard and generic

techniques, the distortion residuals are measured by taking

homographies between the known metric structure and the

calibrated image. The resulting residuals are presented in

Table 1. This shows that the accuracy of the generic cali-

bration is slightly less than the standard technique for low

distortion levels. As the level of distortion increases, the

magnitude and standard deviation of the errors for the stan-

Table 1. Mean and SD of the distortion residuals af-

ter calibration for three real images.

Sample ID 1 2 3

Standard RMS 0.0880 0.1296 1.1983

technique SD 0.0344 0.0635 0.6711

Generic RMS 0.6503 0.7195 0.6811

technique SD 0.3531 0.3906 0.3831

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

pixels (x50)

p
ix

e
ls

 (
x
5
0
)

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

pixels (x50)

p
ix

e
ls

 (
x
5
0
)

Figure 3. Vector plots of residuals for standard

method (left) and generic method (right).

dard technique increase, while the generic method main-

tains its accuracy throughout. For sample number 3, a vec-

tor plot of the residuals for each method is shown in Fig. 3.

This shows a classic distortion bias pattern for the standard

technique, whereby the parametric model overcompensates

for distortion towards the image (distortion) centre, and un-

dercompensates towards the image periphery. In contrast,

although there is a systematic error in the generic residuals,

there is no distortion bias present. The systematic error is

due to error in the estimate of the camera centre.

These results are in broad agreement with the simulated

results - the error in the standard method increases as the

distortion increases, whereas the generic method is not sen-

sitive to changes in distortion. The difference in error mag-

nitudes between the simulated data and real data results can

be attributed primarily to the images used in the real ex-

periments (Fig. 5). Only the areas covered by the grids in

the images are undistorted, and thus distortion residuals for

the periphery of the images, where the distortion is greatest,

are not calculated. Grids do not cover complete images due

to the difficulty in accurately extracting corners of severely

distorted grids.

A second experiment is also conducted to assess the

calibration precision. This involves calibrating with each

method, and then performing a motion estimation task. Im-

ages are taken of a planar grid attached to a linear motion

controller. Five images are taken with translation incre-

ments of exactly 25mm. Homographies are taken between

each step and subsequently decomposed to recover the mo-

tion. For calibrated images the homography H can be de-

composed as H = (R3×2|Rt), where R is the relative ro-

tation and t is the translation. These translation vectors are

plotted end to end in Fig. 4. For visualisation purposes,

the difference between each vector and the average vector

is scaled by twenty. As can be seen, the generic method

outperforms in the recovery of the translation component.

Lastly, samples of undistorted images resulting from

each method are illustrated in Fig. 5. Again the generic

method is seen to outperform the standard method around
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Vector errors are scaled ×20.

Figure 5. Original distorted image, standard method

correction and generic method correction.

the periphery of the image.

4 Conclusion

This paper deals with a recent method for camera cali-

bration that is suitable for all types of sensors. This generic

property clearly makes it attractive for many applications,

especially for calibrating non-perspective sensors. How-

ever, currently the expected performance of the generic

method is unclear. This paper addresses this performance

issue, providing a side by side comparison with the well

established standard perspective camera calibration tech-

nique. Our experiments are conducted with real and sim-

ulated data, for sensitivity to noise, distortion residuals, and

a motion estimation task. From these results we can con-

clude that the recently proposed generic calibration tech-

nique achieves good performance levels at low to mid dis-

tortions, although the standard method performs better for

these distortions. For higher distortion levels the accuracy

of the generic method is maintained, whilst the accuracy

of the standard method significantly reduces. Overall, this

performance characterisation furnishes important practical

information to the vision community, clearly showing how

the precision of the generic method compares with the well

established standard technique. It is concluded that the

generic method is particularly suited to the calibration of

high distortion sensors, and should be used in place of the

standard method for such sensors.
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