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Abstract

For a social robot, the ability of learning tasks via
human demonstration is very crucial. But most current
approaches suffer from either the demanding of the huge
amount of labeled training data, or the limited recognition
cabability caused by very domain-specific modeling. This
paper puts forward a semi-supervised incremental strategy
for the robot to learn the manipulative tasks performed by
the user. The task models are extended Markov models,
taking a set of pre-learned object-specific manipulative
primitives as basic states. They can be initialized with few
labeled data, and updated continously when new unlabeled
data is available. Furthermore, the system also has the
capability to reject unlabeled observation as unseen tasks
and detect a new task model from a group of them. Thus,
using this strategy, the robot only needs human teaching
at every beginning, then elaborate the learned tasks, and
even extend task knowledge by its own observation. The
experimental results in an office environment show the
applicability of this approach.

1 Introduction

Recently, robots that cooperate with humans are receiv-
ing more and more interest in the robotics as well as in the
computer vision research community. It is an interesting
application field that is expected to have a high future
market potential. A couple of global and also mid-sized
companies have come up with quite sophisticated robotic
platforms that are designed for human-robot interaction.
The ultimate goal is to place some robotic assistant or
companion in the regular home environment of people, who
would be able to communicate with the robot in a human-
like fashion.

For human-centered robots, it is very important to
achieve the awareness of the state of the user. The visual
recognition of human actions provides a non-intrusive
way for such kind of communication between a human
and the robot, especially in passive, more observational
situations. In the near past, much work has been done
in this area [11]. Starting from recognizing short-term,
predefined commands for the human-robot interaction,
the research focus shifts to more complicate, semantically
elaborated human gestures. In terms of Bobick’s taxonomy
of movements, activities, and actions [1] this can be
characterized as a shift from movements to more structured
activities. In this regard, object manipulations2 add an
additional complexity because the hand trajectory needs to

1J. Fritsch is now with the Honda Research Institute Europe GmbH in
Offenbach, Germany.

2Nehaniv refers to them as manipulative gestures [8].

be interpreted in relation to the manipulated object. Due to
Bobick this kind of context characterizes actions.

Our focus is the vision-based learning and recognition
of object manipulation tasks, which are sequential object
manipulations. For example, “take a cup” and “take a tea
can” should not only be recognized as two independent
manipulative actions but also as an entity with the under-
lying human intention “prepare tea”. But the realization of
such a vision system is difficult. The reasons are twofold.
Firstly, in the low-level image processing, the trajectory-
based gesture recognition suffers from the notorious seg-
mentation ambiguity and spatio-temporal variability. The
approaches which are based on neat state descriptions also
meet difficulties for robust object detection and tracking,
especially when the mutual occlusion between the hand
and the object happens during manipulation. On the higher
level, because of the generality of the definition of “task”,
there does not exist any universal task model. In the
approaches using semantic models, the prior knowledge of
a certain kind of task must be well studied and summarized
as a task-specific grammar, which limits the application
of such model to a small and well-defined area. On the
other side, the demand for a huge amount of training data
prohibits the use of probabilistic approaches in learning
large-scale tasks.

In this paper, we put our attention on the higher inter-
pretation level and propose an online task-learning strategy
based on prelearned object-specific manipulative primi-
tives. The system is based on a two-layered structure (see
Figure 1). In the top layer, the manipulative tasks are mod-
eled by an extended Markov process. It uses the detected
primitive output from the lower layer as states. In order
to have comparable similarity measurements between the
primitive sequences with different lengths, a random model
is used to scale the probability. The task model can be
initialized with few labeled data and updated incrementally
when new unlabeled data becomes avaliable. Moreover,
with the possibility to reject, the system is able to detect
the unseen tasks during learning process and build up new
task models. These two capabilities – to reject unmodeled
sequences and to learn from unlabeled data – are essential
for a human-like interaction style with a robot, which does
not separate between a learning mode and a recognition
mode. Learning of new task models can take place during
normal interaction. If the robot does not understand a
specific action sequence the human interaction partner can
instantly react on it by repeating the sequence, so that the
robot is able to establish a new model for it.

This paper is organized as follows: In the next section,
the related work on task learning is discussed. Section
3 shows the system architecture, scratches the primitive
detection, and presents the task model and the decision rule.
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The learning strategy is described in detail in Section 4.
Section 5 is dedicated to system evaluation. After that, the
paper is closed by a summery.

2 Related work

Over the past years, a bunch of work has been carried
out to learn and recognize the long-term human actions. In
order to recognize the Japanese tea ceremony, a Stochastic
Context Free Grammar (SCFG) is build up by Yamamoto
according to the performing rules in the ceremony [12]. In
Chan’s work, a simple feature vector is used for modeling
the interaction primitive, e.g. approach. The transition
of the semantic primitives are modeled by HMM [2].
These semantic approaches can only be learned with prior
structural knowledge given by a human. Thus, as good as
they are, they are only applicable in pre-defined domains.

In the smart homes project, the inhabitant actions of
the user are predicted according to task models, which are
Markov models that have been generated from an unsu-
pervised clustering of the data recorded in 1250 days [10].
For a household robot, it may be feasible to group similar
activities after observing a certain amount of tasks for
many times. But more naturally, users will expect that
the robot is able to learn some tasks from only a few
demonstrations. Pardowitz developed a task precedence
graph (TPG) for such purpose. The TPG could be ini-
tialized as a most restrictive model with one instance
and incrementally generalized by including more logical
transition possibilities [9].

Our scenario prohibits us to use a large amount of data
as Rao and Cook [10]. Similar to Pardowitz et al. [9],
our approach chooses an incremental way to learn the
Markov model of the task. But what goes beyond it is that
our approach has a probabilistic similarity measure of the
unlabeled sequence given a learned model, which leads to
the capability of the rejection of unseen tasks and group
them into new tasks unsupervisedly.

3 System Architecture

In our definition, the manipulative task has two semantic
layers. The bottom layer consists of the object-specific
manipulative primitives. Each object has its own set of
manipulative primitives because we argue that different
object types serve different manipulative functions and
even manipulations with the same functional meaning are
performed differently on different objects. The top layer is
used for representing the manipulative task, which are mod-
eled by typical transitions between certain manipulative
primitives. The system architecture is shown in Figure 1.
From bottom to top, a processing thread is created for each
detected object. Thus, the feature computation and HMM-
based recognition are performed in parallel for different
objects. The task level takes all detected primitives from
different threads as input. The task decision is based on
matching the total sequence with the different task models.
For recognition, a top-down process utilizes the task-level
prediction of possible primitives for a task-driven attention
filter on the low-level image processing.

3.1 The manipulative primitive detection

The manipulative gesture is different to the face-to-
face interactional gesture because it reflects the interaction
between the human hand and the objects, not the pure hand
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Figure 1: System architecture

movement with a meaningful trajectory. The hand is de-
tected in a color image sequence by an adaptive skin-color
segmentation algorithm (see [3] for detail) and tracked over
time using Kalman filtering. The hand observation o

hand
t

is represented by the hand position (hx, hy)t at time t. In
order to avoid occlusion problems with interacting hands,
we use an object recognizer based on the Scale-invariant
Feature Transform (SIFT) [6] on the static scene. Then,
object-dependent primitive actions are purely defined based
on the hand trajectory that approaches an object instead of
considering the object in the hand as a context. If a moved
object is applied to another object, the second object defines
the object context. The observation vector of a detected

object o
obj
i contains its position (ox, oy), a unique identifier

(ID) for each different object type in the scene and its height
oh and width ow. So the object observation vector for a
single object is:

o
obj
i = (ox, oy, ID, oh, ow). (1)

As mentioned before, a processing thread is created for
each detected object. In the processing thread for object
i. The five-dimensional feature vector vf which represents
the interaction of the hand and the object is calculated from

o
hand and o

obj
i . It contains the features: magnitude of

hand speed v, change of the hand speed ∆v, change of
speed direction ∆α, distance r between the object and the
operative hand scaled by object size, as well as the angle
γ of the line connecting object and hand relative to the
direction of the hand motion.

vf = (v,∆v,∆α, r, γ) (2)

The features are invariant with regard to translations, minor
scale, and small rotations.

In the object manipulations, we argue that the more
meaningful hand movements happens in the vicinity of the
object. In our setting it is centered in the middle of the
detected object and limited by the ratio β of its radius
and the object size. Because of possible occlusions during
the manipulation and the local uncertainty while moving
an object, we concentrate on the semantic information of
typical trajectories in the vicinity of a static objects. These
are termed object-oriented manipulative primitives, e.g.,
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“take a cup”. They are modeled by HMMs. Different to
the normal parameter set (the initial, transitional, and ob-
servational probabilities of a HMM), terminal probabilities
are added. Each of them reflects the probability of a HMM
to terminate given a hidden state and is calculated similar
to the initial probabilities, except using the last states.

In order to spot the primitive from the trajectories, a
PF called Sampling Importance Resampling (SIR) is used
(better known as CONDENSATION introduced by Isard and
Blake [4]). The resampling step in the particle propagation
is able to adapt the starting point of the model matching
process if the beginning of the primitive does not match the
beginning of the segment. The terminal probability gives
an estimation of the primitive’s ending point. This combi-
nation to a certain extent solves the problem of the forward-
backward algorithm which needs a clear segmentation of
the pattern. Therefore the manipulative primitives can be
detected from a long-term observation. The details of PF
based HMM matching can be found in [5].

3.2 Model of the task

The manipulative tasks are modeled as a first-level
Markovian process which is the same as Moore’s def-
inition [7]. Although this assumption violates certain
domain dependencies, it is an efficient and practical way
to deal with task knowledge. All the tasks share a set
of possible manipulative primitives. The model Λi for a
manipulative task i contains the transition matrix Ai, the
initial probability Πi, the terminal probability Ei, and a
threshold Thi. Suppose the result from the manipulative
primitive recognition is the sequence Po. To calculate the
acceptance of a task Λi = (Πi, Ai, Ei,Thi), a random
model Λr is used, which has no associated threshold and
is learned from all the training data from different tasks.
The similarity of the sequence and a task model s(i, Po) is
calculated as:

s(i, Po) = log(
p{Po|Πi, Ai, Ei}

p{Po|Λr}
) (3)

Taking the possible rejection into consideration, the task
decision d(Po)for recognition is:

d(Po) =

{

arg max
i

(s(i, Po)|s(i, Po) > Thi)

null
(4)

In the following section, the learning process of the model
will be described.

4 Task Learning

In the task learning, it is supposed that the robot has
some basic recognition capabilities. That means the mod-
els of object-specific manipulative primitives are trained
already. The primitive detector in the lower layer turns
the observation of a manipulative task to a sequences of
primitives and feeds them into the learning process as input.
What’s worth mentioning is that the primitive detection is
not perfect. Consequently, both the labeled and unlabeled
training data for task learning could have possible deletions,
insertions, and substitutions in them.

The semi-supervised learning process is shown as pseu-
docode in Figure 2. It starts from a small set of labeled
sequences. Suppose there are n different labels, n manip-
ulative task models will be constructed. The model for

/∗ Supervised Learning ∗/

1. construct Λ1...n and Λr from labeled data
2. find P th

i for each task model Λi (i = 1 . . . n)

/∗ Unsupervised Learning ∗/

for each new unlabeled sequence Pm do
1. update random model Λr

2. compute d(Pm) (see Eq. 4)
if d(Pm) = j then

update task model j
else {d(Pm) = null}

i∗ = arg max
i

(s(i, Pm))

if s(i∗, Pm) ≥ Tho then
1. update task model Λi∗

2. choose new P th

i∗

else {s(j∗, Pm) < Tho}
/∗ reject Pm as unseen task ∗/
insert Pm into buffer
if buffer is full then

1. build a task model Λn+1

2. k∗ = arg min
k=1...lb

(s(n + 1, P buffer

k ))

if s(n + 1, P buffer

k∗ ) ≥ Tho then
1. take Λn+1 as a valid task model
2. n← n + 1

else {s(n + 1, P buffer

k∗ ) < Tho}
delete the sequence P buffer

k∗

Figure 2: Pseudocode of semi-supervised task learning

task i that is learned from u labeled data is represented

as Λi,u. Ãi,u is the matrix recording the counts of all
transitions between the primitives which happened in the
labeled data. In order to account for unseen events, we use
a simple “adding one” method. Consequently, the matrix

Ai,u is the resulting matrix 1 + Ãi,u normalized in column.
Πi,u, Ei,u and the parameters in Λr are computed in the
same way. But the random model Λr is learned using all
the sequences from different tasks. Given Λr and Λi, the
similarity measurements of the labeled sequences from one
task can be calculated according to Eq. 3. Then, Thi,u is set
as the minimum of them and the corresponding sequence is
saved in memory as the instance of worst matching P th

i .

When an unlabeled sequence Pm is perceived, the ran-
dom model is updated first. As a consequence, the Thi,u

is renewed to T̂hi,u. Afterwards, the decision of Pm is
made based on Eq. 4. There are two possibilities. Case
1, the sequence is sorted into task j. The task model Λj

will be updated. Case 2, the decision is null which means

no s(i, Pm) greater than T̂hi,u. Because this decision is
only made according to the current task models, in order
to group similar sequences and update a task model during
the learning process, a general lowest matching threshold
Tho is introduced, which defines the allowed loosest match
between the sequence and its task model. So when the
process entered case 2, the best matching task model i∗ =
arg max

i
(s(i)) is computed. Dependent of the comparison

of s(i∗, Pm) and Tho, the case 2 is divided into two
subcases. Case 2.1, if s(i∗, Pm) is greater than Tho, the
sequence is labeled as i∗. The task model Λi∗ will be
updated and the worst matching sequence of this model will
be evaluated again. The case 2.2 means the all s(i, Pm)
are less than Tho. This means it is far away from known
models and just rejected as an unseen task.
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A new sequence is labeled when the process goes into
case 1 or case 2.1. The corresponding task model will be

updated. Suppose Ãi,one represents the transition of the
primitives in the new sequence, Ai,u+1 is the normalized

1+ Ãi,u + Ãi,one. The update of Πi, Ei is in the same vein.
When the process has entered the case 2.1, the task

threshold will also be updated. The similarity measure-
ments of the sequence in memory and the new observation
given the updated model are calculated again, the task
threshold Thi,u+1 and the sequence in memory will be
set to the smaller matching result and the corresponding
sequence.

Because of the task rejection, this learning strategy could
be extended to learn new tasks unsupervisedly based on
current task models. Considering also the possible false
negative task rejection, a buffer with a pre-defined length lb
is used to save the rejected sequences. Once the buffer is
full, a temporary model is built up based on the sequences
in it. If all similarity measurements between the sequences
and the new model are above the Tho, this model is taken
as a valid learned new task model and the buffer is emptied
for next new model. Otherwise, the sequence with lowest
similarity will be deleted from the buffer. Then, the next
task rejection refills it and triggers the process again.

5 Experiments

In our experiment, a scenario in an office environment is
set as the image in Figure 3. A person sits behind a table
and manipulates the objects that are located on it. She or he
is assumed to perform one of three different manipulation
tasks: (1) water plant: take cup, water plant, put cup; (2)
prepare tea: consists of take/put cup, take tea can, pour
tea into cup, put tea can; (3) prepare coffee: consists of
take/put cup, take milk/sugar, pour milk/take sugar into cup,
put milk. In the experiment, each task is performed 4-5
times by 8 different persons resulting in 36 sequences for
each task and a total of 108 sequences. The images are
recorded with a resolution of 320x240 pixels and with a
frame-rate of 15 images per second. The object recognition
results have been labeled because the evaluation experiment
should concentrate on the performance of the task learning.

Figure 3: The office scenario used in the experiment.

5.1 Evaluation of primitive detection

To test the performance of the object-oriented manip-
ulative primitive detection, the 108 whole task sequences

are randomly divided into a training set of 60, and a test
set of 48 sequences. Table 1 shows the detection results
of the object-specific primitives. Because the primitives
are detected from longer time observation, we use the
primitive error rate (PER) defined as PER=(#Substitution +
#Insertion + #Deletion)/#Truth to present the quality of the
detection. Considering the random initialization of HMM,

Table 1: The detection of the manipulative primitives.
Object Primitive Num. of Truth PER

tea take 16 27.5± 9.4
put 16 6.8± 1.9

milk take 14 33.5± 11.6
put 14 12.8± 5.6

sugar take 13 53.1± 19.6
cup take 48 7.7± 3.5

put 42 15.6± 2.8
pour 43 21.5± 6.9

plant water 16 38.1± 24.2

the Baum-Welch algorithm ran 10 times to achieve the
standard deviations. Though the results are not perfect, they
provide a good chance to evaluate the task learning under
noisy input.

5.2 Manipulative task learning

The second evaluation assesses the semi-supervised
learning of the manipulative tasks. For every task, the
whole training set contains the primitive sequences
detected from 20 observations, 16 sequences are testing
data. Figure 4 shows the results of recognition rate of the
different tasks given different length of labeled data in the
training set. In the figure the recognition error rates of
the tasks, especially the error rates caused by rejection,
decrease quickly when the length of labeled data increase
from 1 to 4, and become stable when the length gets larger.
That indicates the acceptance threshold of the task models
can not be correctly set without enough labeled data. The
reason for that is that too few labeled sequences of a
task will lead to biased models and quite small similarity
measurements for the unlabeled sequences. In this case, the
system rejects them as unseen tasks. Thus, the threshold
stays quite high and cause a lot of rejections during testing.
In the experiment, in order to test the new task learning

Figure 4: The recognition error rates based on different
lengths of labeled data

strategy, only labeled data from two tasks are given. From
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the results in Figure 4, it is found that a valid task model
cannot be constructed without more than 4 labeled data.
So the length of labeled observations of two tasks and the
lb are both set to 5. Figure 5 shows the task recognition
error rates on the testing set when choosing different initial
tasks. The results indicate that the unlabeled task was
detected and correctly built up.

Figure 5: The task recognition error rate based on labeled
data only from two tasks

6 Summary

Social robots that act in domestic environments need to
be able to extend their knowledge during the interaction
with their environment. Here we focus on the recognition
of manipulative tasks. We put forward a semi-supervised
incremental task learning strategy. The paper assumes that
the robot can start the learning by a few labeled training
samples and optimize the models afterwards without the
need of a human pre-labeling. The task models are based
on a Markov process that is coupled to a HMM-based
recognition of primitive actions. A random model is
taken into consideration to adjust the score of a primitive
sequence. Thereby, the system is able to reject unseen tasks.
Then, a solution is presented that collects and filters the
rejected tasks in a buffer which is used to learn new models
in an unsupervised way. This scheme provides the robot
the ability to pre-structure its observation. In future work
this could be the basis for an active learning strategy of the
robot that could ask questions about previously unknown
task sequences observed.

The experiments show the applicability of this approach.

Pre-learned tasks were stably recognized from an initially
labeled set of only four samples. Additional tasks that
were previously unknown were newly instantiated and
successfully recognized on a test set.
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