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Abstract

Identifying an individual from surveillance video is a diffi-

cult, time consuming and labour intensive process. The pro-

posed system aims to streamline this process by filtering out

unwanted scenes and enhancing an individual’s face through

super-resolution. An automatic face recognition system is

then used to identify the subject or present the human oper-

ator with likely matches from a database. A person tracker

is used to speed up the subject detection and super-resolution

process by tracking moving subjects and cropping a region of

interest around the subject’s face to reduce the number and

size of the image frames to be super-resolved respectively. In

this paper, experiments have been conducted to demonstrate

how the optical flow super-resolution method used improves

surveillance imagery for visual inspection as well as auto-

matic face recognition on an Eigenface and Elastic Bunch

Graph Matching system. The optical flow based method has

also been benchmarked against the “hallucination” algo-

rithm, interpolation methods and the original low-resolution

images. Results show that both super-resolution algorithms

improved recognition rates significantly. Although the hallu-

cination method resulted in slightly higher recognition rates,

the optical flow method produced less artifacts and more vi-

sually correct images suitable for human consumption.

1 Introduction

Identifying an individual from surveillance video is an

extremely challenging problem. Not only are the subjects

poorly resolved, but human operators often need to manually

scan through hours of low quality video just to locate the sub-

ject. This makes post analysis of surveillance video a very

time consuming and labour intensive process.

A person tracker can be used in conjunction with a super-

resolution (SR) system to to track subjects of interest and

enhance the video for visual inspection respectively. Super-

resolution is a signal processing technique that combines

complementary information contained in multiple frames of

a video sequence to generate images of a higher resolution.

Recent studies [9, 16] have shown that super-resolution helps

improve image fidelity as well as automatic recognition rates

when dealing with low-resolution faces. Super-resolution

however, is a computationally intensive process due to the

high dimensionality of the reconstruction problem. By em-

ploying a person tracker to detect for and crop around the

face, the number and size of the images to be super-resolved

can be greatly reduced to result in a net increase in speed.

This paper describes a novel system that automatically

tracks, super-resolves and recognises a subject’s face from

surveillance video. The output from the super-resolution

stage also improves the video for visual inspection. Videos

from the Terrascope database [7] were tested on two face

recognition systems to demonstrate the improved perfor-

mance of the super-resolution system. The original low-

resolution, interpolated images as well images from another

super-resolution method have been included for comparison.

The outline of the paper is as follows. Section 2 pro-

vides background information on super-resolution as well as

an overview of the super-resolution algorithms used in the ex-

periments. The tracking system is described in Section 3. Ex-

perimental methodology and results are presented in Section

4 and concluding remarks are discussed in Section 5.

2 Super-Resolution

Super-resolution image reconstruction is the process of

combining multiple low-resolution (LR) images into one im-

age with higher resolution. These low-resolution images are

aliased and shifted with respect to each other – essentially

representing different “snapshots” of the same scene carry-

ing complementary information [11]. The challenge is to find

effective and computationally efficient methods of combin-

ing two or more such images. Interested readers are referred

to [4, 11] for more information on super-resolution.
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2.1 Observation model

The observation model that relates an ideal high-resolution

(HR) image to the observed LR images is described as:

yk = DBkMkx + nk, (1)

where yk denotes the k = 1 . . . p LR images, D is a sub-

sampling matrix, Bk is the blur matrix, Mk is the warp matrix,

x is the ideal HR image of the scene which is being recovered,

and nk is the additive noise that corrupts the image. D and

Bk simulate the averaging process performed by the camera’s

CCD sensor and optical system respectively while Mk can be

modelled by anything from a simple parametric transforma-

tion to motion flow fields. As a general rule, estimation of a

super-resolved image is broken up into three stages – motion

compensation (registration), interpolation, and blur and noise

removal (restoration) [11].

Most common techniques assume global motion, in that a

single equation is used to transform all points from one im-

age to the other. Translational, rotational, affine, perspective

and projective motion all fall under this category [5]. These

methods are useful for satellite imagery, still scenes contain-

ing only camera motion, or where the type of motion is known

a priori. Their performance suffers when applied to surveil-

lance videos where motion consists of multiple independently

moving subjects whereas local methods like optical flow can

account for independent motion within the scene.

Faces in surveillance video however, present additional

problems into the equation as they are non-planar, non-rigid,

and subject to self occlusion and reflectance variations [8].

Most optical flow algorithms can overcome the non-planarity

and non-rigidity properties of the face. However, as they work

on the assumptions that the observed brightness of a pixel re-

mains constant over time and that neighbouring pixels belong

to the same surface, their performance suffers when motion

boundaries, illumination changes and specular reflections are

present. A robust estimation framework such as the one im-

plemented in this paper [2] can addressed these issues.

2.2 Approaches to Super-Resolution

Super-resolution techniques can be classed into two cate-

gories:

• Reconstruction-based – The super-resolution process

operates on the pixel values of the LR images. No prior

knowledge of the scene is required.

• Recognition-based – Features of LR images are used to

synthesise the super-resolved image. Works well with

images that the system is trained for.

The majority of super-resolution techniques are

reconstruction-based, dating back to Tsai and Huang’s

work in 1984 [13]. These methods are versatile, in that

they can super-resolve any image sequence (provided the

motion between observations can be modelled) as they work

directly with the image pixel intensities. Recognition-based

approaches on the other hand, are quite recent and super-

resolve by recognising features of the input images and

synthesising or “hallucinating” the output [1]. Training is

required and the system works well with the same type of

images it was trained on since the system knows about the

type of image it’s expecting eg. full frontal pose normalised

facial images.

2.3 Systems tested

Two super-resolution methods have been included in this

set of experiments. The first system is a reconstruction-based

method developed by Lin et al. [8] that uses a robust optical

flow method [2] to register the local motion between frames.

The second is the “hallucination” algorithm developed by

Baker et al. [1]. While this method does not require regis-

tration due to only needing one LR image to synthesise the

high-resolution image, visual artifacts are expected to be pro-

duced due to many of the input images not being full frontal

pose normalised faces.

3 Tracking System

A tracking system developed by Denman et al. [6] was

used to track people about the scene and a face detector [15]

was added to the system to locate the faces of the tracked sub-

jects. The tracking system uses motion detection and optical

flow to track objects, using a colour model as an additional

aid to help with matching when ambiguities arise. Optical

flow is the preferred modality, as it is effective at resolving

occlusions by segmenting the optical flow image based on the

expected velocities of the tracks.

Person detection is performed by splitting the image into

sub-regions which contain concentrated areas of motion and

then locating heads and fitting ellipses within each region

[18]. Working within subregions overcomes problems caused

by people occupying a common column of the image. Heads

are detected by combining the vertical projection and pixel

height of the top contour (to aid in overcoming problems

caused by holes in the motion image) and finding local max-

ima, which are then filtered by analysing the surrounding re-

gion. Ellipses are fitted to the valid heads at an aspect depen-

dent on the candidate head. The candidate is accepted if there

is a suitable amount of motion within the ellipse.

Faces are detected after the person has been located. An

object detector [15] trained on frontal face images was used

to detect faces. A skin detector is then applied to the located

faces to guard against false positives. Face detection is ap-

plied only to the region where the person has been located.

If multiple faces are detected, the face which is closest to the

local maxima which defines the head is accepted.

Five consecutive frames are needed to super-resolve a face

for identification. To ensure that the face has been correctly

tracked, the face bounding box area and that the median face

position (centre of bounding box) relative to the median per-
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(a) (b) (c)

(d) (e)

Figure 1. Example of tracking system output

son position are checked to see if they are consistent over the

frame sequence (Figure 1 shows an example of a typical se-

quence).

4 Experimental Results

Videos from the Terrascope database [7] were used to con-

duct the experiments throughout this paper. The database con-

sists of videos captured by surveillance cameras placed in an

office environment with twelve subjects. The videos were

captured in colour at 640×480 pixels (px) at 30 frames/sec

(fps). Enrolment images for each subject were also provided.

The person tracker detailed in Section 3 was used to scan

through the videos and identify frames containing visible

faces. The detected faces weren’t necessarily full frontal as

it is unrealistic to expect to always capture full frontal faces

from surveillance footage. The tracker’s output was used to

crop the frames around the face for super-resolution. The

cropped frames were converted to grayscale before super-

resolving. The CSU Face Identification Evaluation system

[3] was then used to evaluate recognition performance of the

super-resolved images as well as the cropped low-resolution

(LR) and interpolated images. Two face recognition methods

were tested - the Eigenface [14] method and Elastic Graph

Bunch Matching (EBGM) [17]. The Eigenface method is a

baseline holistic method that new methods are usually bench-

marked against while EBGM a newer technique that is less

sensitive to pose and lighting changes.

For the face recognition stage, the face detector used in

Section 3 was used to segment, normalise and mask the super-

resolved, low-resolution and interpolated images. Frontal

face images from the Face Recognition Grand Challenge

(FRGC) [12] Fall2003 and Spring2004 datasets were used to

train the facespace for the Eigenface system. The normalised

images were then projected into the facespace and the dis-

tance to the enrolment images computed. The Mahalinobis

Cosine distance metric [3] has been chosen here because it

yields consistently greater accuracy.

4.1 Results

Figure 2 shows the normalised and masked images ready

for recognition. As expected, both super-resolution algo-

rithms produced much sharper images than the interpolation

methods. The hallucinated images however, generated visual

artifacts around the eyes and lips due to face localisation er-

rors and the input face image not being full frontal. These

artifacts are results of the method attempting to “hallucinate”

a frontal face from the input image. Figure 3 shows more

sample images from the optical flow super-resolution and hal-

lucination methods. The degree of artifact production for the

hallucination method varies between images and may even

change the appearance of the face completely.

(a) (b) (c)

(d) (e)

Figure 2. Comparison between processed images:

(a) low-resolution, (b) bilinear interpolation, (c) cubic

spline interpolation, (d) optical flow super-resolution,

(e) hallucination

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison between optical flow super-

resolution and hallucination: (a–c) optical flow super-

resolution, (d–f) hallucination

Rank tests were conducted to investigate automatic face

39



identification performance. Table 1 shows the rank 1 and 2

recognition rates with the different image enhancement meth-

ods. The recognition performance for a given rank N is the

probability of the true subject being included in the top N

list determined by the system. For the Eigenface system, op-

timal performance was achieved by retaining 250 eigenvec-

tors in the facespace, bringing the rank 1 recognition rates

for the super-resolved images to over 30%. The low overall

performance can be attributed to the Eigenface method being

sensitive to pose and illumination variations and the poorly

resolved surveillance video. The EBGM system fared much

better, with rank 1 and rank 2 rates of over 50% and 70% re-

spectively. Both super-resolution methods maintained a com-

fortable margin from the interpolated and low-resolution im-

ages on both face recognition systems.

Surprisingly, the hallucination method outperformed the

optical flow super-resolution despite the generation of visual

artifacts. This seems to suggest that the artifacts are actu-

ally increasing recognition performance in this situation by

by making the probe images more “frontal” and hence closer

to the enrolment images. In addition, the Terrascope dataset is

quite small so these results are only an indication. Testing on

a larger database such as the XM2VTS database [10] should

produce more convincing results.

Table 1. Rank 1 and 2 recognition rates for the two

face recognition methods

Image type Eigenface (R 1/2) EBGM (R 1/2)

Low-resolution 18.5 / 29.1% 44.6 / 61.2%

Bilinear 28.1 / 38.0% 52.5 / 69.6%

Cubic spline 26.2 / 37.7% 53.0 / 71.3%

Optical flow SR 31.7 / 41.6% 54.6 / 71.5%

Hallucination 33.1 / 46.6% 56.5 / 73.1%

5 Conclusion

This paper has presented a novel person tracking, super-

resolution and recognition system. Face identification tests

from a small surveillance video database has been conducted

to demonstrate the improvement in recognition rates. Visual

inspection also reveals a significant improvement in image fi-

delity over the low-resolution and interpolated images.

As expected, the optical flow super-resolution method re-

sulted in an appreciable improvement in recognition rates.

Surprisingly, the hallucination algorithm achieved the high-

est recognition rates despite the generation of unwanted arti-

facts around the regions where facial features were expected.

The optical flow method however, has been shown to pro-

duce more visually correct estimates of the high-resolution

image whilst providing comparable recognition performance.

As a result it is possibly more suited to surveillance where en-

hanced images are displayed to the human operator who then

makes the final identification task.

Future work will include experimenting with a larger video

database to produce more conclusive results as well as inte-

grating the tracking and super-resolution stages to further de-

crease computation time.

References

[1] S. Baker and T. Kanade. Limits on Super-Resolution and How

to Break Them. 24(9):1167–1183, September 2002.
[2] M. Black and P. Anandan. A framework for the robust esti-

mation of optical flow. In Proc. ICCV-1993, pages 231–236,

May 1993.
[3] D. Bolme, R. Beveridge, M. Teixeira, and B. Draper. The CSU

Face Identification Evaluation System: Its Purpose, Features

and Structure. In Proc. International Conference on Vision

Systems, pages 304–311, April 2003.
[4] S. Borman and R. Stevenson. Spatial Resolution Enhancement

of Low-Resolution Image Sequences - A Comprehensive Re-

view with Directions for Future Research. Technical report,

Laboratory for Image and Signal Analysis (LISA), University

of Notre Dame, July 1998.
[5] L. Brown. A Survey of Image Registration Techniques. ACM

Computing Surveys, 24(4):325–376, 1992.
[6] S. Denman, V. Chandran, and S. Sridharan. A multi-class

tracker using a scalable condensation filter. In Advanced Video

and Signal Based Surveillance, May 2006.
[7] C. Jaynes, A. Kale, N. Sanders, and E. Grossmann. The Ter-

rascope dataset: scripted multi-camera indoor video surveil-

lance with ground-truth. In Proc. Visual Surveillance and

Performance Evaluation of Tracking and Surveillance, pages

309–316, October 2005.
[8] F. Lin, C. Fookes, V. Chandran, and S. Sridharan. Investigation

into Optical Flow Super-Resolution for Surveillance Applica-

tions. In Proc. APRS Workshop on Digital Image Computing

2005, pages 73–78, February 2005.
[9] F. Lin, C. Fookes, V. Chandran, and S. Sridharan. The Role

of Motion Models in Super-Resolving Surveillance Video for

Face Recognition. In Proc. AVSS 2006, November 2006.
[10] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre.

XM2VTS: The Extended M2VTS Database. In Proc. AVBPA-

1999, pages 72–76, 1999.
[11] S. Park, M. Park, and M. Kang. Super-resolution image re-

construction: a technical overview. IEEE Signal Processing

Magazine, 25(9):21–36, May 2003.
[12] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoff-

man, J. Marques, J. Min, and W. Worek. Overview of the face

recognition grand challenge. In Proc. CVPR ’05, volume 1,

pages 947–954, 2005.
[13] R. Tsai and T. Huang. Multiframe image restoration and reg-

istration. Advances in Computer Vision and image Processing,

1:317–339, 1984.
[14] M. Turk and A. Pentland. Eigenfaces for recognition. Journal

of Cognitive Neuroscience, 3(1):71–86, March 1991.
[15] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001.
[16] X. Wang and X. Tang. Face Hallucination and Recognition.

In Proc. AVBPA-2003, volume 2688 of Lecture Notes in Com-

puter Science, pages 486–494. Springer, January 2003.
[17] L. Wiskott, J. Fellous, N. Krüger, and C. Malsburg. Face
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