
Action Recognition of Insects Using Spectral Clustering

Maryam Moslemi Naeini1, Greg Dutton2, Kristina Rothley2, and Greg Mori1

1School of Computing Science,2School of Environmental Management

Simon Fraser University, Burnaby, BC

{mmoslemi, gdutton, krothley, mori}@sfu.ca

Abstract

We propose a technique to recognize actions of

grasshoppers based on spectral clustering. We track

the object in 3D and construct features using 3D object

movement in segments of video which discriminate be-

tween different classes of actions. We sample from these

feature vectors and compute the eigenvalues and eigen-

vectors of affinity or similarity matrix. Then, we perform

K-means algorithm to cluster component from each of

dominant eigenvectors of the affinity matrix. These dom-

inant eigenvectors are embedding coordinate of video

segments in our embedding space. We experimented with

our method on a noisy track of one insect to validate our

approach.

1 Introduction

Biologists are interested in analyzing the behavior of

individual or colonies of insects. Actions of insects are

studied under variation of environment variables like il-

lumination and temperature during hours of video. It is a

hard task to watch hours of video to see what they are do-

ing; therefore, building an automated system that could

track and classify insect actions is very useful. In this

work, we present a novel application of methods in the

area of computer vision to this problem in order to track

and recognize insect actions.

In our work, the behavior of grasshoppers is analyzed.

The behavior consists of movement and different actions

such as standing still, walking, and jumping. We use a

simple tracking algorithm for an individual insect. We

create a 3D track of the insect, via 2D tracking in video

from each of a pair of calibrated cameras, and then per-

forming triangulation.

Given this 3D track of the grasshopper in a long video

sequence, we wish to find interesting actions. We pose

this as a clustering problem, finding groups of frames

from the video that correspond to similar actions. We

define a similarity between groups of frames based upon

a motion cue. The frames of the video are then clus-

tered using spectral clustering [6]. Since our application

involves long video sequences, we employ the Nystrom

extension [5], a sampling technique that can be used in

computing eigenvectors for spectral clustering. Our con-

tribution is developing an application of spectral cluster-

ing to clustering actions in long video sequences, and a

particular method of sampling for the Nystrom extension

to cope with rare actions.

The rest of this paper is organized as follows: In sec-

tion 2 we review previous work. We present our main

approach for tracking and clustering algorithm in sec-

tion 3. The experimental results are given in section 4

and we conclude our paper in section 5.

2 Previous Work

In our work we demonstrate that the Nystrom exten-

sion can be applied to clustering problems with a large

number of frames, and rare activities. In related work,

Zhong et al. [10] build a co-occurance matrix over vec-

tor quantized spatial motion features, and perform clus-

tering using this. They use this to find unusual events

in long video sequences. In their case, the co-occurance

matrix is sparse, and eigensolving is efficient.

Other work on automatically analyzing the behaviour

of animals includes Balch et al. [1], who have devel-

oped methods for tracking multiple ants, and suggest the

use of Hidden Markov Models for analyzing their be-

haviours.

Belongie et al. [4, 2] analyze the behaviour of mice in

caged environments by first tracking and then computing

spatio-temporal patch features.

Also related is the work of Subramanya et al. [7] on

analyzing GPS and wearable sensor data, in this case on

human subjects.

3 Main algorithm

In this section we present two main parts of our algo-

rithm. First we discuss the method we use to find the 3D

track of the object; next, we explain how to cluster the

3D information into different action classes.

3.1 Stereo Tracking

We first start by tracking the grasshopper using a

stereo camera setup. We setup two cameras and calibrate

them by employing Bouguet’s camera calibration tool-

box [3]. Tracking this insect is difficult due to its very

small size and its color changes as it is walking. In addi-

tion, the insect makes occasional jumps which are so fast

that sometimes it is very hard to see. To overcome these

difficulties, we used a fixed painted background and im-

age differencing to detect the object, instead of tracking

Funding provided by CFI and BCKDF as part of the SDATS

project. Kris Rothley received funding from the NSERC Discovery

Grant, and cooperation from Terasen Gas

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

1-1

1

Figure 1. Difference image before smoothing

Figure 2. Difference image after smoothing

Figure 3. Experimental enviroment

algorithm based on color histogram or motion models of

the target, which tend to oversmooth the jumps.

We employ a background subtraction technique to

track the object. We smooth the difference image using

a Gaussian filter and take the pixel of maximum sum of

red, green and blue values as center of the location of the

insect. The difference image is shown before and after

smoothing in Figure 1 and Figure 2. The noise is mainly

because of presence of slight changes in the background,

for example in the border of the cage. Our background

image is set to be the average of all the frames up to time

t to make the algorithm more robust to slight changes in

illumination or other variations in background image [8].

Employing these techniques we track the object in each

of the cameras separately. By doing stereo triangulation

we compute the 3D location of the object.

3.2 Motion Features

Using the 3D track enables us to specify the location

of the object at each frame. The next and more challeng-

ing step is to cluster different actions of the insect such as

jumping, walking and standing still using its movements

between frames. Although the tracker always points to

the object, the location information is noisy. This noise

is more when the object is not moving which makes the

clustering task more difficult.

We define a set of motion features based upon this

tracker output which we will use to describe grasshop-

Figure 4. Feature vectors

per tracks. The motion features will be clustered us-

ing spectral clustering (described in the following sec-

tion). Obtaining a good motion feature is a critical task

that impacts the quality of clustering. The word ’good’

means that the feature should be as different as possible

between the actions which are in two separate classes,

and as similar as possible between actions within a same

class.

Constructing the motion feature is a crucial part and

since we are using only the 3D position we smooth that

using a Gaussian filter to remove the noise in the tracker

output. Then for each non-overlapping window of size

W of 3D position of the object we compute the differ-

ence between xt (location of grasshopper in 3D at time

t) and xt+δt
for each of the frames in this window. This

feature is illustrated in Figure 4. So our feature vector

Vt for window of size W of 3D coordinates sequence in

time will be:

Vt = {|xk − xk+δt
| : k = t, t + 1, . . . , t + W} (1)

We will perform clustering on these W dimensional

feature vectors. The motivation for employing these fea-

tures instead of the gradient of x is to eliminate noises in

the tracker by using δt frames instead of 1 frame used for

gradient computation. So when the grasshopper is stand-

ing still but the tracker is noisy, this feature is designed

to smooth the gradient computation.

3.3 Spectral Clustering

In spectral clustering, an affinity matrix W that in-

dicates the similarity between each pair of data is con-

structed. An entry Wij of this matrix stores the similar-

ity between nodes i and j. In our work nodes i and j are

blocks of frames which are described using our motion

feature. The data is clustered by analyzing the eigen-

values and eigenvectors of this matrix. In this work, we

employ the normalized cuts method [6] of spectral clus-

tering. We compute the leading eigenvectors of W , and

cluster data points using kmeans in the embedding space

given by these eigenvectors.

When dealing with large amount of data, computing

eigenvalues and eigenvectors of a large matrix is an ex-

pensive task. For our application, there will be thou-

sands of nodes, so constructing, storing, and comput-

ing the eigenvectors of the matrix W will be intractable.

To overcome this limitation, we apply the Nystrom ex-

tension [5] which provides a method for extrapolating

eigenvectors computed on a portion of W to the entire

matrix.

Following the notation in Fowlkes et al. [5], given an

N by N affinity matrix W ,

2

W =

[

A B

BT C

]

(2)

where A is an n by n sub-matrix of W containing a set

of randomly chosen sample points. If n << N , eigen-

vectors U of A can be computed efficiently, and then

extended as Ū to the entire matrix W by:

Ū =

[

U

BT UΛ−1

]

(3)

where Λ is the diagonal matrix of eigenvalues of A.

An important point for our application is that if rare

activities exist, and are not randomly chosen in matrix

A, the extended eigenvectors given by (3) will not be

accurate. In the next section we describe how we handle

this problem automatically.

3.4 Clustering Actions

In this section we provide the details of how we apply

spectral clustering to our task of clustering the actions of

grasshoppers.

After constructing features in section 3.2 we compute

the distance dij , between nodes i and j using Euclidean

distance, and the weight between nodes is:

Wi,j = exp(−
d2

ij

σiσj

) (4)

We apply local scaling instead of a fixed scaling [9].

In this method, the scaling factor σ is a function of dis-

tance between nodes. Our choice for σ is :

σi = d(Vi, Vk) (5)

Vk is the kth neighbor of node i. k in this formula

should not be very large or small. If it is large, weights

between all the points become large and if it is small,

most of the nodes get a low similarity. In our experi-

ments, k is set to 10.

The reason for not using the simple Gaussian function

is that the distances between clusters are not the same

and if we have a tight cluster within a background cluster

and use a constant σ, it leads to weights that may not

describe the real similarity between nodes.

We then randomly choose data samples to construct

the matrix A for use in the Nystrom extension to per-

form spectral clustering on W . However, we note that

without samples for small clusters, such as jumps, the

Nystrom extension in (3) will be inaccurate. Therefore,

we augment the set of random data samples with a fixed

number r of data points. These points are chosen based

upon affinities in B, finding samples which are furthest

away from the originally randomly chosen samples. In

our experiments, we found the results to be insensitive to

the setting of this parameter r.

We then compute eigenvectors and eigenvalues for

this augmented matrix Â, and use the Nystrom exten-

sion to extend these eigenvectors to the entire matrix W .

Finally, we perform k-means clustering on the resulting

embedding coordinates.

We summarize our action recognition algorithm be-

low:

1. Construct the graph using features in section 3.2.

2. Sample from the nodes randomly.

3. Augment these samples with the r = 4 furthest

nodes from these samples.

4. Compute distance between samples

DA
nsamp×nsamp using L2 distance.

5. Compute distance between samples and rest of the

nodes, DB
nsamp×nrest using L2 distance.

6. Sort rows of DA matrix and choose the jth column

as σA compute affinities A, the between samples

matrix using (4).

7. Sort columns of DB matrix and choose the jth row

as σB compute affinities B between samples and

rest of the nodes Matrix using (4)

8. Compute the eigenvalues of affinities using one shot

technique in [5].

9. Use the K largest eigenvectors E = [E1E2...Ek]

10. Cluster rows of matrix E which are the embedding

coordinate in K-dimensional embedding space us-

ing K-means algorithm

4 Experimental Results

We tested the presented algorithm on 16500 frames of

a video of one grasshopper. Figure 3 shows how we set

up the cameras for our experiments. We use two cameras

and calibrate them by calibration toolbox in Matlab[3].

Then we apply the background subtraction to get the 2D

track in each camera separately and get the 3D coordi-

nate using the triangulation procedure in this toolbox.

We smooth this track by a Gaussian filter and divide the

track into non overlapping windows of size 5, W = 5,

for each frame in this window we compute the difference

between 3D position of x and that is the feature vector

or nodes of the graph.We also set δt=5 for our experi-

ments. We build this graph once and run experiments

with different number of cluster centers.

We manually supply ground truth labelling of these

frames into 3 classes of distinct actions – standing still,

walking and jumping.

We run our code 200 times for each value of number

of clusters. The reason for this is the randomness in sam-

pling of Nystrom method and initialization of K-means

algorithm. The number of samples are 100.

Correctness of clustering is measured by the purity of

a cluster. To compute the correctness, in each round we

find the number of frames for each action that has been

fallen to each cluster. Then clusters are labeled with the

action that has maximum number of frames in them. We

do it for each cluster then add the number of frames of

an action in clusters that are labeled with the same label

and divide this sum by the total number of frames of each

3

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of added jump samples

C
o
rr

ec
tn

es
s

Figure 5. Effect of Number of added jump samples on perfor-

mance of detecting jump actions.

3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of clusters

C
o

rr
ec

tn
es

s

Without jump samples

With jump samples

Figure 6. Impact of sampling from jumps on performance.

Curves show correctness of frames labelled as jumping with

and without samples from this class.

action. This number will be the fraction of actions that

are correctly classified.

The average of the correctness is shown for each of

them in Figure 7 with respect to number of clusters. The

plot shows this fraction for each action and for all of

them together. As it is shown in this figure our overall

performance is above 80 percent and the graph is almost

smooth for K > 5.

Figure 6 shows the importance of having samples

from rare activities. In our experiments jump frames

are rare and their features are very different from walk-

ing and standing still. We checked in our experiments

whether the jumps are sampled or not and plotted the

correctness of recognized jump frames in both cases. As

it is shown in Figure 6 there is a big change if we do not

sample jump frames. In this case the computed eigenvec-

tors which are the embedding coordinate will not lead to

a good clustering because we estimate the eigenvectors

of the whole affinity using them and if there were no

samples of the unusual actions the Nystrom extension

will not accurately reconstruct the eigenvectors.

We also did experiments using different values of r to

analyze the effect of this parameter on the performance

of the algorithm. As it can be seen in Figure 5, hav-

ing more samples could result in a slightly better per-

formance but the method is relatively stable for different

values. More importantly, if we do not have any sam-

ples from the rare actions we cannot recognize them cor-

rectly.

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Number of clusters

C
o

rr
ec

tn
es

s

Standing still

Walking

Jumping

Overall

Figure 7. Impact of number of clusters on performance

5 Conclusion

In this paper we have developed features using 3D

track of the object and applied the spectral algorithm to

recognize actions of the object. It uses samples points

from the data to cluster all of it and this will improve the

performance. We show how to use the Nystrom exten-

sion in a problem that involves small clusters, and that

the naive random sampling will have a substantial effect

on performance on these clusters.

References

[1] T. Balch, Z. Khan, and M. Veloso. Automatically track-

ing and analyzing the behavior of live insect colonies.

In Fifth International Conference on Autonomous Agents,

2001.

[2] S. Belongie, K. Branson, P. Dollar, and V. Rabaud. Mon-

itoring animal behavior in the smart vivarium. In MB,

2005.

[3] Camera Calibration Toolbox for Matlab.

http://www.vision.caltech.edu/bouguetj/calib doc/.

[4] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Be-

havior recognition via sparse spatio-temporal features. In

VS-PETS, 2005.

[5] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spec-

tral grouping using the nystrom method. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

26(2), February 2004.

[6] J. Shi and J. Malik. Normalized cuts and image segmen-

tation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 22(8):888–905, 2000.

[7] A. Subramanya, A. Raj, J. Bilmes, and D. Fox. Recogniz-

ing activities and spatial context using wearable sensors.

In Conference on Uncertainty in AI (UAI), 2006.

[8] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.

Wallflower: Principles and practice of background main-

tenance. In The Proceedings of the Seventh IEEE Interna-

tional Conference on Computer Vision, pages 255–261,

1999.

[9] L. Zelnik-Manor and P. Perona. Self-tuning spectral clus-

tering. In Proceedings of NIPS 2004, 2004.

[10] H. Zhong, J. Shi, and M. Visontai. Detecting unusual

activity in video. In Proceedings of the 2004 IEEE Com-

puter Society Conference on Computer Vision and Pat-

tern Recognition, CVPR 2004, pages 819– 826, June

2004.

4

