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Abstract

The detection of abnormal movements is an important prob-
lem in video surveillance applications. We propose an
unsupervised method for abnormal movement detection in
scenes containing multiple persons. Our method uses cu-
bic higher-order local auto-correlation (CHLAC) to extract
movement features. We show that the additive property of
CHLAC in combination with a linear subspace method is
well suited to simplify the learning of normal movements
and to detect abnormal movements even in scenes con-
taining multiple persons. One particular advantage of this
method is that it does not necessitate the object segmenta-
tion and tracking and also any prior knowledge about ob-
jects. Some experimental results are shown to exhibit the
validity of the method.

1 Introduction

Today, so many surveillance cameras are located all over
the place for security purposes. However, it takes too much
labor for human to monitor all the data. If only abnormal
movements are automatically screened, it saves a lot of la-
bor. Thus, the detection of abnormal movements is a crucial
and urgent issue in video surveillance applications.

Assuming surveillance cameras are set up in public
places, we must consider that there are simultaneously mul-
tiple persons in scenes. Usual strategy in human motion
recognition necessitates the segmentation and tracking of
each person as a preprocessing [1, 2], and this naturally re-
quires heavy computational load in proportion to the num-
ber of persons. Moreover, the recognition accuracy depends
on the accuracy of the segmentation and tracking method.
In another approach of event-based video analysis [10, 11],
it is hard to deal with multiple persons’ moves themselves
since the extracted features include not only movement fea-
tures of objects but also a position in an image

In this paper, we adopt CHLAC (cubic HLAC) features
[4] for feature extraction to deal with multiple persons. The
CHLAC features can extract features of multiple persons’
moves without the segmentation or tracking of each person,
and computational cost is constant regardless of the number
of persons. In many approaches using movement features,
prior knowledge about human being is assumed [8, 9], but
CHLAC features need no prior knowledge about objects.

For detecting abnormal movements, systems need to rec-
ognize those. However it is almost impossible to learn all
the examples of rare abnormal (unusual) movements in ad-
vance. Nevertheless, we can define abnormal movements

as not being normal (usual) movements that are often hap-
pening in front of a camera. Therefore, abnormal move-
ments can be detected by learning normal movements sta-
tistically. In such statistical approaches [7, 11], multiple
persons’ moves cannot be dealt with directly.

We propose a scheme of combining CHLAC features
as movement features and a linear subspace method for
learning normal movements. Due to the integral property,
CHLAC has a additive property for domain. Therefore, all
the normal movements are included in the subspace of nor-
mal movements even for scenes containing multiple per-
sons’ moves, and only abnormal movements depart from
the subspace. It is noticed that normal movements are eas-
ily learnt unsupervisedly and the system can construct the
subspace of normal movements in an adaptive way.

Further, the subspace of normal movements could incre-
mentally be learnt and constructed in real time. As such on-
line learning, we propose and compare the method solving
eigenvalue problem and the incremental method approx-
imating eigenvectors without solving eigenvalue problem
(CCIPCA) [3].

2 Present Method

2.1 Preprocessing
We assume a stationary video camera and to extract mov-
ing objects from time-differential images. For eliminat-
ing noise, we binarize the time-differential images. The
threshold at each image is decided by using the discriminant
and least squares threshold selection method [6]. Figure 1
shows an example of image preprocessing.

(a) (b) (c)

Figure 1: Preprocessing of video frames. (a) original
image. (b) time-difference image. (c) binary image.

2.2 CHLAC features
As movement features from time-series binary images, we
employ cubic higher-order local auto-correlation (CHLAC)
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features [4]. CHLAC features for three-dimensional
(x, y, t) data are the expansion of higher-order local auto-
correlation (HLAC) features [5] for two-dimensional (x, y)
data. Each component of CHLAC features is formulated by
the following equation:

x
(N)
f (a1, . . . , aN)

�

∫
W×H×T

f(r)f(r + a1) . . . f(r + aN )dr

(1)

where f is a time-series image, and a variable r and lo-
cal displacement vectors ai (i = 1, . . . , N) are three-
dimensional vectors in an image data, whose coordinates
are x-y and time. W denotes the width of an image, H the
height of an image, and T the range of time.

The number N represents the order of CHLAC, and this
paper adopts N = 0, 1, 2. Suppose N = 0, then this fea-
ture represents the number of pixel whose value is 1 in the
case of binary images. Suppose N = 1, the number of in-
dependent displacement vectors is 13. For N = 2, it is 237.
Figure 2 shows an example of the second order displace-
ment vector patterns of CHLAC.

Hence, CHLAC feature vectors have 1+13 +23 7 = 25 1
dimensions for the case of binary images.

Figure 2: Example of displacement pattern of
CHLAC. (h r’ b” )

CHLAC features have important characteristics, position
invariance and additive property. These characteristics are
derived from being integral features. Position invariance
means that a feature vector is invariant regardless of loca-
tion (x-y-t) of a moving object in a data. Additive prop-
erty is shown in Figure 3. Owing to these properties, our
method does not require the object segmentation nor track-
ing, and the computational cost is constant regardless of the
number of persons.

(a) fA (b) fB (c) fA + fB

Figure 3: Additive property of CHLAC: The feature
vector of (c) is the sum of individuals of (a) and (b),
viz. fA + fB .

2.3 Linear subspace
We use a linear subspace method for the detection of abnor-
mal movements. The reason is that the combination of the
additive property of CHLAC features and the linearity of a
linear subspace method has a desirable attribute for the de-
tection of abnormal movements. Namely, if the linear sub-
space of normal movements is constructed, all the normal

movement features belong to the subspace and only abnor-
mal movement features depart from the subspace even in
the case of multiple persons in a scene. Therefore, we can
easily detect abnormal movements by measuring the dis-
tance between an input feature vector and the subspace of
normal movement features.

At first, we use PCA (Principal Component Analy-
sis) and find the eigenvectors to construct the subspace
of normal movements SN . The eigenvectors U =
[u1, . . . , uM ], ui ∈ V M (i = 1, . . . , M) are calculated
by solving the following eigenvalue problem:

RXU = UΛ, RX �
n

E
i= 1

{xix
T

i }

where xi (i = 1, . . . , n ) ∈ V M are M -dimensional fea-
ture vectors, and Λ = diag(λ1, . . . , λM ) is the eigenvalue
matrix. If λi are in decreasing order, the contribution rate
ηK is represented as

ηK �

∑K

i= 1 λi∑M

i= 1 λi

We adopt the first K eigenvectors for SN , where K is the
smallest number under ηK ≥ 0.9 9 , for example.

The projection operator (projector) onto SN is given by
P = UKUT

K
, where UK = [u1, . . . , uK ]. Then, the pro-

jector onto ortho-complement subspace to SN is given by
P⊥ = IM − P . The distance d⊥ between an input fea-
ture vector x and the subspace of normal movements SN is
formulated as

d2
⊥ = ‖P⊥x‖2

= x
T (IM − UKUT

K)x

In this paper, we define d⊥ as the abnormality value.
The following mathematical expression explains why

only abnormal movements are detected by using the pro-
jector P⊥. We also illustrate this in Figure 4.

suppose x = x
(N)
1 + · · · + x

(N)
n + x

(A)

(N : n o r m al, A : abn o r m al)

then ‖P⊥x‖ = ‖P⊥(x
(N)
1 + · · · + x

(N)
n + x

(A))‖

= ‖P⊥(x
(N)
1 + · · · + x

(N)
n ) + P⊥x

(A)‖

= ‖0 + P⊥x
(A)‖ > 0

Figure 4: Additive property of CHLAC and linear
subspace. (two normal movements (walk) and one
abnormal movement (tumble))

2.4 Online learning
Alternatively, the subspace of normal movements can be
constructed incrementally for learning normal movements
online and in real time and for dealing with a lot of
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data in real-world applications. We adopt two meth-
ods for incremental learning. One is the method which
solves eigenvalue problem every step with updating auto-
correlation matrix, and the other is the method which ap-
proximately calculates eigenvectors without solving the
eigenvalue problem.

The former is accurate, but the computational cost is
large since the eigenvalue problem is solved every step.
The latter is the method using candid covariance-free in-
cremental principal component analysis (CCIPCA) [3]. It
is a fast algorithm, since this method does not need to solve
the eigenvalue problem. The first eigenvector and the first
eigenvalue are updated as follows:

vn+1 =
n

n + 1
vn +

1

n + 1
xn+1x

T

n+1

vn

‖vn‖

where the first eigenvector is represented as vn/‖vn‖ and
the first eigenvalue as ‖vn‖. It is proved that these converge
to the true eigenvector and the true eigenvalue as n → ∞ .
The n-th eigenvector and the n-th eigenvalue are obtained
as well.

3 Experiments

We experimented for the case one person appear in a frame
and the case multiple persons appear in a frame. In the first
two experiments, learning phase was separated from testing
phase (batch learning). In the learning phase, the subspace
of normal movements was constructed by using only nor-
mal movement data, and in the testing phase we compared
the distance from the subspace of normal movements. In
the last experiment, the subspace of normal movements was
learnt by online method without dividing the phase.

3.1 Batch learning

At first we experimented for the case one person appear in a
frame. In the learning phase, we adopted “ walking” as nor-
mal movements, and the learning data contained six objects
(persons) that walk rightward or leftward. The testing data
contained another person’s walking, running, and tumbling.
Figure 5 shows examples of the testing data.

(a) walk (b) run (c) tumble

Figure 5: Examples for recognition.

Figure 6 shows the distance between an input feature
vector and the subspace of normal movements, i.e. abnor-
mality value, at each frame of walking, running and tum-
bling movement. The distance of normal movement, walk-
ing movement, was small, while the distance of running and
tumbling movement was both large, so that only abnormal
movements was successfully detected. The dimension of
the subspace of normal movements was 12 dimensions out
of 251 dimensions.

Secondly, we experimented for the case multiple persons
appear in a frame by batch learning. In our data, there were
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Figure 6: Abnormality value. (one person)

up to three persons in a frame simultaneously. In the learn-
ing phase, video sequences contained three persons’ walk-
ing, and in the testing phase one person out of three walking
persons tumbled (Figure 7)

(a) three persons’
walking

(b) one person’s
tumbling

Figure 7: Examples of multiple persons’ moves.

Figure 8 shows the abnormality value, i.e. , the distance
between an input feature vector and the subspace of nor-
mal movements for the data containing only normal move-
ments and for the data containing an abnormal movement.
As a result, a tumbling movement in scenes containing two
persons’ walking was successfully detected as an abnor-
mal movement. The dimension of the subspace of normal
movements was five dimensions out of 251 dimensions.
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Figure 8: Abnormality value. (batch learning)

In this experiment, a person on the edge of an image and
occlusions between persons were not exactly normal move-
ments but a part of normal movements. Nonetheless, exper-
iments showed the features on such occasions hardly had
large distances from the subspace. This means that the fea-
tures on that occasions were also learnt as belonging to the
subspace of normal movements. Namely, the system sta-
tistically and adaptively learnt normal events in front of the
camera just by using a lot of data. It should be noted that
this is performed in unsupervised learning, viz. without any
supervised learning about each movement.

3.2 Online learning
Next, we experimented on online learning without divid-
ing the phase. The data was the series of video sequences
including multiple persons we used in the last subsection.

At first, we applied the method that solves the eigenvalue
problem every step with updating auto-correlation matrix.
Figure 9 (a) shows the abnormality value, the distance from
the normal movement subspace constructed by using this
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method at each step. The abnormal value at the first sev-
eral hundreds of frames were sometimes large and unsta-
ble, since the number of samples was too small to construct
a statistically stable and valid subspace. As is seen, the
value of an abnormal movement around at the 1950 frame
was large, and an abnormal movement was successfully de-
tected.

Secondly, we applied the other method using CCIPCA.
Figure 9 (b) shows the distance from the subspace of nor-
mal movements constructed by using CCIPCA. Though this
is the method to approximately construct the subspace of
normal movements, an abnormal movement was success-
fully and more clearly detected.

Here, we set the rank of the subspace of normal move-
ments four, since the rank was nearly constant through all
the frames and the execution time for calculating the contri-
bution rate was large. The execution time for estimating the
contribution rate was 21 seconds per frame on a Pentium 4
3.02GHz, while by giving the rank the time became 0.0039
seconds per frame. For comparison, the time for solving
eigenvalue problem at each step was 1.7 seconds per frame.
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Figure 9: Abnormality value. (online learning)

4 Conclusions

We showed that the present system can statistically detect
abnormal movements even in scenes containing multiple
persons. It should also be remarked that our method does
not require the object segmentation nor tracking, and the
computational amount is constant regardless of the number
of persons.

Also, normal movements are not defined explicitly,
whereas the system can learn normal movements and detect
abnormal movements in quite an adaptive way such as the
unsupervised learning of occlusions of persons. Further, we
showed that the system can incrementally learn the normal
movements and detect abnormal movements fast enough in
real time.

In this paper, we experimented for the case that there was
one type of normal movements in scenes. However, our
method could be applied to multiple normal movements,
provided that the abnormal movement feature vector is not

represented as a linear combination of normal movement
feature vectors (namely, linearly independent). If such a
condition does not hold, we could improve the method by
employing such as clustering in the subspace of normal
movements. Thus, in any ways, we need to conduct more
experiments for various scenes containing multiple types of
normal movements.

In addition, our method is so general as not depending on
objects, because no model of objects are assumed. There-
fore, we need to evaluate its potential validity by perform-
ing experiments for other kinds of objects in various appli-
cations.
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