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Abstract

This paper presents a general approach and research re-
sults towards flexible and intelligent vision systems which
the author has been interested in and devoted to for a quar-
ter century. First, such a general approach is emphasised
that is based on the general framework of pattern recogni-
tion consisting of two stages of feature extraction; invari-
ant feature extraction as the first geometrical aspect, and
discriminant feature extraction as the second statistical as-
pect. Along the line of the general approach, several meth-
ods the author has developed so far are introduced, such as
multivariate analysis approach to automatic threshold se-
lection, Higher-order Local Auto-Correlation (HLAC) fea-
ture extraction, and face recognition. Finally, some re-
cent researches using expanded HLAC features for motion
recognition are illustrated.

1 Introduction

“Vision” or visual information processing occupies up to
80 percent of the sensory information processing of human
(and animals also), and it forms the base of their intelli-
gence in the real world. Thus, vision has been an impor-
tant topic in the research fields of pattern recognition, ar-
tificial intelligence, and also cognitive science. So many
researches have been done in this nearly half century, how-
ever such a vision system that is flexible and intelligent
enough like human and animals is still far on the way.

There are increasing needs for computer vision in var-
ious fields of industrial production, material and medical
sciences, and in recent years particularly in the field of
video surveillance for security purposes. In those applica-
tion fields, such systems are expected that are as convenient
(hopefully, personal computer based), practical (real-time
high speed) and adaptive (trainable for various purposes) as
possible.

The remarkable development of computer technology
is providing more powerful computational environment.
However, such requirements are still difficult to be satis-
fied, which seem to reveal a discrepancy of the conven-
tional approach comprising the steps of image processing
techniques.

In view of the situation, it seems that now is the time to

reconsider the problem of computer vision and seek a new
paradigm; beyond the traditional paradigm which is influ-
enced by the serial and procedural processing by comput-
ers, and toward a more general and flexible vision, with also
taking into account parallel distributed processing which is
typical in the error back-propagation learning in multilayer
neural networks.

The author has been engaged in the rather theoretical re-
search of pattern recognition, viewing vision as a typical
example of its application, and has been interested in and
devoted to a new scheme of flexible and intelligent vision
systems.

In this paper, firstly, we start with considering the general
framework of visual information processing and review the
traditional approach (serial and procedural processing) and
also the neural network approach (parallel and distributed
processing), pointing out the problems and drawbacks in-
herent in those approaches.

Secondly, as a theoretical foundation, the general frame-
work of pattern recognition and feature extraction is recon-
sidered, with showing the importance of two stages of fea-
ture extraction: invariant feature extraction as a geometri-
cal aspect and discriminant feature extraction as a statistical
aspect. Theoretical analysis of the latter statistical feature
extraction in general nonlinear case reveals the framework
of Bayesian estimation that underlies the supervised learn-
ing in neural networks and also multivariate data analysis
methods.

Thirdly, we present a scheme for flexible visual infor-
mation processing and recognition which we have devel-
oped to put our theoretical standpoint into practice as the
simplest model. The first geometrical feature extraction is
based on higher order local autocorrelations so as to satisfy
shift-invariance and additivity that are required and prefer-
able as the fundamental conditions for vision systems. The
second statistical feature extraction is based on multivari-
ate data analysis, which linearly combines so obtained the
primitive features in the first stage into effective new fea-
ture(s) for a given task. The system is very simple but can
adaptively and quickly learn a given task from training ex-
amples and shows a considerably good performance.

Finally, some recent developments and several applica-
tion examples of the scheme are shown.
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2 Visual Information Processing

Let us start with considering visual information process-
ing in a general framework, regarding it as a mapping “ :
Y = “ (X) that converts input X to output Y . For exam-
ple, when considering X as an input image, the output Y is
an image in the cases of so-called image processing such as
image enhancement or restoration. Y is a numerical value
(or set of values) in the case of image measurement, and Y

is a symbolic label (name) of category or its representation
in the case of image recognition. For image understanding,
the output Y will be more complicated description.

In this way, problems of visual information processing
can be regarded as problems of how to construct the im-
plicit mapping “ . In practice, it is not easy to construct
the mapping directly as a whole. Therefore, it is usual to
reduce the procedure into simpler procedures in sequence
and/or in parallel (viz, shift-invariant filters). Thus the in-
put X in the general framework is not necessarily restricted
to a whole input image but can be a sub-image in paral-
lel procedure, and both input and output can be intermedi-
ate information representation in sequential procedure. It
should be remarked here that the mapping “ can treat vari-
ous forms of input and output at each level in the hierarchy
of processing or cognition, and the point is that it is gen-
erally abstracting redundant input information to more effi-
cient and useful output information. This is also valid for
other cases of pattern recognition and information process-
ing in general as well.

The essential problems posed from this general frame-
work are the following two. One is a problem of informa-
tion representation. Basically the following three kinds of
representation are considered.

R1: continuous and distributed representation of pattern
information at signal level (function)

R2: discrete and localized representation of symbolic in-
formation at conceptual level (symbol)

R3: compressed and summarized representation of feature
information at intermediate level which bridges the
two levels in the above (vector)

In visual information processing and pattern recognition in
general as well, it is important that these different types of
information representation are smoothly integrated. In par-
ticular feature representation R3 is a central issue.

The other problem is posed on approach to information
processing, that is how to construct the implicit mapping
“ in an optimal way. Regarding this, the following three
schemes (methods) are conceivable (Cf. Fig.1).

M1: direct procedural method

M2: forward adaptation method

M3: backward adaptation method

M1 is the most direct and ordinary method for the con-
struction of processing (mapping Y = “ (X)), and sup-
posed procedures are directly given in a sequence. On the
other hand, M2 and M3 are indirect methods for adaptively

Figure 1: General scheme of information processing

obtaining the optimum processing in a framework of feed-
back by evaluation and optimization.

In M2 a family of mapping “ (parameterized model)
is considered, and the optimum mapping is adaptively ob-
tained (approximated) by optimizing the parameters by us-
ing training samples of input-output pairs. This is a su-
pervised learning method, and comparison for evaluation is
done between output Y and the ideal one that is given by
a teacher. Back propagation learning in feed-forward neu-
ral networks and methods of multivariate analysis are the
cases.

In M3 the mapping (processing) “ is not obtained explic-
itly, but equivalently the processed result (output) Y is ob-
tained explicitly. Namely, a parameterized model of output
Y is assumed and considered as an interpretation of input
X , and the optimum model is adaptively obtained (approx-
imated) by comparing and evaluating Y with X . For exam-
ple, a model fitting such as line or surface fitting to image
data is the case.

It is noted that M2 is regarded as forward inference of
processing (“ ) while M3 as backward inference of inter-
pretation (“ −1).

3 Review of Ordinary Approach

Keeping this in mind, we shall review the ordinary approach
in what follows.

To make the point clear, let us consider two simple ex-
amples of visual information processing for binary images
in Fig. 2. One (Fig. 2-a) is a case of image measurement,
where a number of round particles in two different sizes
(large and small) are represented in silhouette without over-
lapping. The task requested here is to count the number of
each kind of particles as quickly as possible. On the other
hand, Fig. 2-b is a case of image recognition, where four
kinds of cartoon faces are requested to be recognized.

a) Image measurement b) Image recognition

Figure 2: Examples of visual information processing
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3.1 Serial and procedural approach

Our usual approach to these are the following serial and
procedural approach. For the case of Fig. 2-a, it comprises
to segment out each object one at a time by scanning, to
classify it into two sizes by measuring, for example, the di-
ameter, and to sum up the counts. Obviously, the computa-
tion time in this case grows proportionally to the numbers of
objects (particles) in the image. For the case of Fig. 2-b, we
usually consider what are the distinctive features for the cat-
egories (faces). Ear shape is different, and having a ribbon
or not is also distinctive. Then the recognition procedure
is reduced to how to recognize ears and ribbons. However,
the subproblems are still pattern recognition problems in a
hierarchy.

Such a serial and procedural approach corresponds to the
direct construction method M1, where the given task is an-
alyzed and decomposed into a sequence of subtasks (pro-
cessing techniques) that are judged necessary to achieve the
specified task. This seems quite natural at a glance, how-
ever deeper consideration will reveal the following prob-
lems inherent to such serial and procedural methods.

1. Applications are limited to such problems that have
clear algorithms for what and how to compute.

2. The sequence of processing techniques is specified for
the given task and therefore tends to lack adaptability
for general-purpose application.

3. Minor errors at each step are accumulated in the end,
resulting in fragile processing.

4. Even if each step of procedure (processing technique)
is optimized, it does not necessarily guarantee the total
optimality of the sequence.

5. Real-time high speed processing is difficult due to the
successive complicated computations.

Originally, serial and procedural scheme is an abstrac-
tion of the aspect of our way of logical thinking. Actu-
ally, the scheme was adopted as a principle of information
processing by modern computers and became a dominant
paradigm of information processing in general. And, we
are too much used to the scheme. The scheme basically as-
sumes the complete and deterministic world of symbols and
logic, excluding uncertainty and ambiguity. Therefore it is
effective and efficient for dealing with well-defined logical
thinking at a higher level but too strict and hard for dealing
with intuitive cognition at a lower level.

3.2 Parallel and adaptive approach

There is a major trend to reconsider parallel information
processing in accordance with the development of parallel
computing facilities and the progress of brain science and
cognitive science. Of course, such an idea that parallel pro-
cessing is natural for images as distributed information is
not new. There have been developed various methods for
parallel processing, for example relaxation methods.

Neural computing, however, differs in that it tries to ap-
proach flexible information processing such as cognition at

an intuitive or sub-symbolic level, referring to the parallel
and distributed processing (PDP) in the brain. There are
two major types of neural networks (NN). One is the type
of feed-forward NN which is typical in multilayer analog
perceptron with back propagation learning [23]. The other
is the type of mutually connected NN which are typical in
Hopfield networks [6] and Boltzmann machine [4].

In particular, the former type is widely applied as a new
paradigm for fl exible pattern recognition and control with
learning capability. This type corresponds to the forward
adaptation method M2, that is, the adaptive construction
of the correspondence relation (mapping “ ) from learning
samples of input and output pairs. Surely the processing
speed after learning is fast because of parallel computation,
however the learning process is slow in convergence and
sometimes trapped into local minima.

Although such a neural computing is significant as a
model of neurological information processing in the brain,
the characteristic of processing elements, viz. sigmoidal
nonlinearity and bounded values between 0 and 1 of input
and output, makes the mathematical analysis difficult and is
not necessarily important in practical application. It would
be rather limitative and inefficient. For example, we could
directly apply the type of NN to the image recognition prob-
lem shown in Fig. 2-b, but feeding an image itself directly
to the input layer is computationally too heavy in learning
mode. For the case of image measurement shown in Fig. 2-
a, obviously we cannot directly employ the bounded output
values of the output layer of the networks. In fact, the prob-
lem of information representation previously stated is not
clear there.

On the other hand, the latter type of mutually connected
NN is applied to combinatorial optimization problems as a
new paradigm of parallel information processing. For vi-
sual information processing, those are applied as a method
of stochastic relaxation for image restoration [2] or as a reg-
ularization (constrained optimization) method to solve var-
ious ill-posed problems [22], although they are still at the
level of early vision. These are corresponding to the back-
ward adaptation method M3.

In particular, the paper [2] points out that in some con-
dition local relationship (MRF: conditional probabilistic
structure) can be equivalently corresponded to global char-
acteristic (potential) via the Gibbs transformation (distribu-
tion) and that a kind of optimization problem can be re-
duced to a problem of stochastic inference (Bayesian or
maximum likelihood estimation) and solved by an iterative
method in thermodynamical analogy (stochastic relaxation
plus annealing).

4 Recognition of Pattern Recognition

In order to consider a new direction of computer vision, it
seems necessary and important to look back again and re-
consider the general and basic framework of pattern recog-
nition. Pattern recognition is the front of intelligence in the
real world, associating continuous distributed information
representation (patterns f (r)) with discrete localized infor-
mation representation (symbols, or categories Cj), and vi-
sion is also included in the framework as a typical case.
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Figure 3: General framework of pattern recognition

4.1 General framework of pattern recognition

The essence of pattern recognition is to summarize the vari-
ous objects (patterns) in the physical world into classes (cat-
egories) and to recognize each object in connection with the
category name. The general framework of pattern recogni-
tion is schematically illustrated in Fig. 3.

Each physical pattern distributes spatially (viz. charac-
ters) or temporally (viz. speech sounds) and is generally
represented by a function f . In practice, it is approximately
expressed as a high but finite dimensional vector in the ob-
servation, e.g. by sampling. Such patterns constitute a high
dimensional continuous topological space called a pattern
space (R1), which is a faithful representation space and not
necessarily convenient for recognition or cognition. Actu-
ally it is quite redundant.

Therefore, such redundant patterns are usually subjected
to extraction of features (information) which are essentially
efficient for recognition. This process, called feature ex-
traction, provides an efficient representation space called
a feature space (R3) with less dimensionality, where each
pattern is represented by a feature vector y. In the feature
extraction as information compression and dimensionality
reduction, an important point is how to evaluate and select
such features that enhance the class separability and clus-
tering.

On the other hand, categories are represented by symbols
Cj(j = 1; : : : ; K ) and form a discrete and finite set (R2).
Thus, recognition can be regarded as a discontinuous map-
ping from the feature space to the category set, resulting
in partitioning and quantizing the feature space into finite
number of subregions each of which consists of a cluster
and is associated with an identical category name.

4.2 Bayesian decision

Patterns in the real world inevitably contain ambiguity and
uncertainty. Therefore probability and statistical theory has
been playing a central role from the early stage in the theory
of pattern recognition [1].

When the feature vector of a pattern is given by y and its
statistical structure is known, the problem of classification
is completely formulated in the framework of statistical de-
cision theory. Namely, Bayesian decision which decides an
input pattern as belonging to the class Cj that has maximum
a posteriori probability

P (Cj j y) = P (Cj)p(y j Cj)/p(y) (1)

yields the optimum classification in the sense of min-
imum error rate, where P (Cj), p(y j Cj), p(y) =
∑K

j=1
P (Cj)p(y j Cj) are a priori probabilities, conditional

probability density functions, and total probability density
function, respectively.

Then the minimum error rate attained, of course, depends
on the feature vector employed. Therefore the essential
problem of pattern recognition is reduced to the problem
of feature extraction, viz. how to extract y that is efficient
for recognition.

4.3 Feature extraction theory

Feature extraction must satisfy opposing requirements: to
extract essential information for recognition while to dis-
card irrelevant information, and to identify (unify) the pat-
terns within each class while to distinguish (separate) the
patterns between different classes. In order to satisfy those
requirements, the process of feature extraction is divided
into two stages: invariant feature extraction as a geometri-
cal aspect and discriminant feature extraction as a statisti-
cal aspect. Those are illustrated in Fig. 3, and each aspect
has been theoretically studied in a general framework [16]
as shown briefl y in the followings.

4.3.1 Invariant feature extraction

Observed images are generally subjected to various geo-
metrical transformations such as translation and dilatation
due to the relative position and movement of observer to
the objects. Nevertheless, we can recognize what the ob-
jects are and how those are transformed. Such a transforma-
tion is called the invariant transformation in the sense that
it does not change and keeps invariant the correspondence
to categories. Therefore, for the base of visual recognition
it is important to investigate theoretically what feature val-
ues should be extracted from the observed image in order
to make such recognition possible.

In general, let a pattern be denoted by a function f , a fea-
ture value by x , feature extraction by a functional x = © [f ],
and an invariant transformation by an operator T (λ). Then
the feature x that indicates the category should be invariant
to the invariant transformation T (λ). That is stated as

© [T (λ)f ] ¡ © [f ] = 0: (2)

In order to extract invariant features, preprocessing called
normalization is usually employed for the transformed pat-
tern T (λ)f . However a more systematic theory has been
developed for invariant feature extraction [16],[19]. The
theory is based on Lie group theory and operator analysis.
By considering infinitesimal operator, a necessary and suf-
ficient condition for invariant feature © [f ] in (2) is given by
a partial differential equation. As its elementary solutions,
a set of linear or nonlinear invariant features x i is obtained
and it forms a feature vector x.

It is noticed that extraction of invariant features leaves
variant features which contain the information on the geo-
metrical transformation. Thus the theory of invariant fea-
ture extraction can also provide the theory of extracting a
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feature © ′[f ] which describes the transformation (λ) of the
pattern, that is

λ = © ′[T (λ)f ] ¡ © ′[f ]: (3)

Thereby a theoretical foundation for the recognition of
shape and transformation is given [19]. It is interesting to
note that invariant features and variant features form mutu-
ally orthogonal manifolds.

This aspect of invariant/variant feature extraction is im-
portant as a principle of geometrical aspect of pattern recog-
nition and cognition as well, in particular in vision research.
It also provides a guide to the direct construction method
M1. Seemingly, this aspect receives less attention in the
research on PDP and NN.

4.3.2 Discriminant feature extraction

Through the invariant feature extraction the patterns be-
longing to an identical class (category), or patterns mutu-
ally related by invariant transformation T (λ), are in princi-
ple captured as an identical point x = © [f ] in the invariant
feature space X . However actual patterns are subjected to
irregular variation and contaminated with noise, and there-
fore the patterns belonging to a class are captured as a sta-
tistical distribution around the ideal point in X .

Hence, the general framework of statistical feature ex-
traction as the second stage is given by a mapping “ ;
y = “ (x), from the invariant feature space X ⊆ Rm to
a discriminant feature space Y ⊆ Rn (n < m ), assuming
multi-class structure of probabilities and statistical distri-
butions ¦ = f P (Cj); p(x j Cj) g

K
j=1

in X , and a criterion
J for evaluating the goodness of “ in Y . And the problem
is to obtain the optimum mapping “ under the criterion J .
This is corresponding to the forward adaptation method M2
in Section 2.

As for the simple and practical methods of statistical fea-
ture extraction, there are several nonparametric methods of
multivariate data analysis, such as RA (regression analysis)
and DA (discriminant analysis). However, those are usu-
ally formulated as linear mappings, and extracted statistical
knowledge are only up to the second order statistics; viz.
means and covariances. Therefore it is not clear how those
refl ect the underlying probabilistic structure and relate to
classification. In order to clarify the underlying essential
structure and meanings, it is necessary to remove the re-
striction of linear mapping and release it to a general non-
linear mapping.

Nonlinear discriminant analysis: Let WY and BY be
the within-class and the between-class covariance matrices
of y, respectively. Then the discriminant feature extraction
is formulated as an optimum mapping “ that maximizes the
following discriminant criterion.

J [“ ] = tr(W−1

Y BY ) (4)

When “ is linear, the coefficient matrix A of the opti-
mum linear mapping “ L(x) = A′

x (where symbol ’ de-
notes the transpose) is given by the eigenvectors of the ma-
trix W−1

X BX of x. This is the result of the ordinary dis-
criminant analysis.

On the other hand, the optimum nonlinear discriminant
feature extraction “ N is obtained by the variational calcu-
lus as the following simple form [14]:

y = “ N (x) =
K∑

j=1

P (Cj j x)cj (5)

and closely relates to the Bayes a posteriori probabilities
and therefore to the Bayesian decision. The optimum dis-
criminant feature space Y is then a K ¡ 1 dimensional sim-
plex the vertexes of which are given by f cj g , and obviously
the Bayes decision boundaries are given by the barycentric
subdivision. The vectors f cj g , which are called the class-
representative vectors, are obtained from the eigenvectors
of the following K by K stochastic matrix S which sum-
marizes the between-class probabilistic relations.

S = [sij ]; sij =

∫
P (Cj j x)p(x j Ci) d x (6)

It is noted that sij can be rewritten as follows by using the
Bayes formula in (1).

sij = ° ij/P (Ci) (7)

where

¡ = [° ij ]; ° ij =

∫
P (Ci j x)P (Cj j x)p(x) d x: (8)

Least-mean-square nonlinear discriminant mapping:
Suppose that f ej g as the representative vectors of each
class Cj are given and fixed in Y and vectors x belonging to
Cj are mapped so as to concentrate around ej , respectively.
Then the class separability (discrimination) can be evalu-
ated by the following mean square error as a functional of
mapping “ .

ε2[“ ] =

K∑
j=1

P (Cj)

∫
‖ “ (x) ¡ ej ‖2 p(x j Cj) d x (9)

Then the least-mean-square discriminant mapping is for-
mulated so as to minimize the criterion. From the stand-
point of multivariate data analysis, this can be viewed as
regressing the class representative vectors ej by the feature
vector x.

It should be also noticed that this is just the same crite-
rion as is used in the back propagation learning of multi-
layer feed-forward neural networks, where ej are given as
desired ideal output for class Cj respectively and usually
taken to be orthonormal base vectors:

e
′

Iej = δij (10)

The optimum nonlinear mapping “ N is obtained by the
variational calculus as follows [16],[17].

y = “ N (x) =
K∑

j=1

P (Cj j x)ej (11)

The least-mean-square error attained is given by

ε2[“ N ] = 1 ¡ tr ¡ : (12)

434



The solution turns out to be the same form as the solu-
tion of the nonlinear discriminant analysis in Eq.(5). It is
remarked that ej are given and fixed in this case and farther
optimization with respect to the configuration f ej g results
in the nonlinear discriminant analysis.

On the other hand, the optimum linear solution (multiple
regression analysis) is given by the following form

y = “ L(x) =
K∑

j=1

L(Cj j x)ej (13)

and, to be interesting, takes a similar form to the nonlinear
solution in (11). Actually, the term L(Cj j x) is the linear ap-
proximation of the Bayes a posteriori probability P (Cj j x)
and explicitly given by

L(Cj j x) = P (Cj) f (¹ j ¡ ¹ )′§ −1

X (x ¡ ¹ ) + 1g (14)

where ¹ j , ¹ , and § X are the class mean, the total mean,
and the total covariance matrix of x, respectively.

4.4 Some commentary discussion

As has been shown in the above, the intrinsic structure of
Bayesian estimation that underlies the statistical discrimi-
nant feature extraction is clarified by expanding the map-
ping “ to general nonlinear one and solving directly the ul-
timate optimum nonlinear mapping by using the variational
calculus. It is important to remark here that discrimination
(separation) of pattern classes results in Bayesian estima-
tion in its ultimate nonlinear case, which also reveals the
close relationship between statistical feature extraction and
Bayesian decision.

From this standpoint we have developed a unified study
which provides a theoretical foundation for various meth-
ods of multivariate data analysis (MDA) and quantification
[21]. It has been shown that each MDA method is intrin-
sically based on the identical Bayesian structure shown in
the previous subsection and closely related to each other,
and that the stochastic matrix S or ¡ always plays an im-
portant role as the multi-class probabilistic and statistical
knowledge obtained from data. It should be noticed that
the usual linear methods of MDA can be regarded as linear
approximations of the unified Bayesian structure and NN,
and recent kernel methods [26] also, can be regarded as its
approximations in some extents of nonlinearity.

The linear methods of MDA can be viewed as a lin-
ear feed-forward NN’s. The ultimate nonlinear discrimi-
nant mapping “ N can be viewed as the opposite extreme,
namely the ultimately optimum nonlinear feed-forward
NN. Actually, it is seen that the back-propagation learning
of ordinary NN tries to approximate the optimum nonlinear
mapping “ N in Eq.(11), and Eq.(12) yields the theoreti-
cally lowest bound of the mean square error.

These theoretical results provides a foundation for fl exi-
ble recognition systems. In practical applications, however,
it is also important to reduce the theoretical framework to
tractable new computation models, by taking into account
the specific structures and knowledge and proper approxi-
mation according to respective actual application.

5 MDA Approach to Image Processing

MDA (Multivariate Data Analysis) simply utilizes linear
models for integrating multivariate information and has
some limitation. However MDA has been widely used as
a practical and nonparametric method, in particular in the
research fields such as psychology and social science which
deal with ambiguous information related to human behav-
ior. A merit of using MDA is that it simply results in
a closed form solution with using up to the second order
statistics and well-developed linear algebraic calculation.

The author pointed out in his early research that MDA
would provide useful methods for image processing, and
has developed several methods for practical applications.

5.1 Automatic threshold selection

The first application was the automatic threshold selec-
tion method [15], which is still widely used as a standard
method.

Threshold selection is a typical example of an unsuper-
vised method to convert/classify an input gray-level im-
age to categorized subregions (objects and background),
where intermediate representation (feature) is used as the
histogram of the input image. Discriminant analysis, more
strictly Fisher’s discriminant criterion, was used to evaluate
the class separability. The optimum threshold is selected
so as to maximize the criterion, and it is also optimum in
the sense of the least square error to approximate the input
image with the resulting binary image. The method was
naturally extended to the case of multi-thresholding, and an
efficient method using DP was proposed.

5.2 Adaptive image processing

Many image processing problems can be formulated as lin-
ear filtering. Therefore, if the ideal resulting processed im-
age to an input image is provided (by a teacher, for exam-
ple), the problem to seek the optimum filter is reduced to the
problem of Multiple Regression Analysis (MRA). Namely,
by regarding the filter as a linear mapping ŷ j = a

′
xj from

the neighboring pixel values (vector xj) around each refer-
ence pixel j to the corresponding ideal pixel value y j , the
least squares optimum filter is obtained by applying MRA
[18]. This method provides an approach to adaptive and
trainable image processing systems.

6 General Approach to Flexible Vision

Finally, we introduce a general approach to fl exible vision
systems for adaptively trainable image measurement and
recognition [16], [20], which has been developed as a sim-
ple realization of our theoretical standpoint.

There, we selected the following three conditions as fun-
damental and important requirements in practical image
measurement and recognition:

C1: Shift-invariance

C2: Frame-additivity

C3: Adaptive trainability.
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The first condition C1 means that no matter where an object
exists within the image frame, its measured value (say, an
area) or recognition result (say, a character “ A”) should be
the same (invariant). The second condition C2 means that
as is obvious from an example of counting the number of
particles in the image frame, the total count over the whole
image frame is equal to the sum of the counts on partitioned
regions. The third condition C3 is important for a general-
purpose system.

Here, it is interesting to note that the MDA methods in
the previous section also satisfy these conditions eventu-
ally. In fact, histogram is a simple case of feature vector
satisfying C1 and C2.

6.1 Scheme of feature extraction

In order to satisfy those conditions, we considered the
following scheme of feature extraction consisting of two
stages that is suggested as a basic framework of feature ex-
traction in pattern recognition.

F1: Geometrical Feature Extraction; A large number of
general and primitive features which satisfy C1 and
C2 are extracted from the whole image frame as initial
features.

F2: Statistical Feature Extraction; By means of linearly
combining the initial primitive features, new features
which are optimal to respective application are adap-
tively extracted through the learning from examples in
order to satisfy C3.

It is noted that the linearity in F2 is important not only to
simplify the learning process but also to conserve the con-
dition C2 in F1.

As the simplest realization of the above scheme, we
adopted Higher-order Local Auto-Correlation (HLAC) fea-
tures for F1 and Multivariate Data Analysis (MDA) meth-
ods for F2.

6.2 HLAC features as F1

The Higher-order Local Auto-Correlation (hereafter de-
noted by HLAC) features are defined by

x f (a1; ¢ ¢ ¢ ;aN ) =
∑
r∈P2

f (r)f (r + a1) ¢ ¢ ¢ f (r + aN );

(15)
where N is the order of HLAC, r is the (x ; y ) coordinate
vector on the image plane P2, f (r) the gray-level at posi-
tion r, and ai the displacement vectors.

The number of HLAC features obtained by combining
the displacements over P2 is enormous, thus we reduce this
number to enable practical application. We restrict the or-
der N up to the second order (N = 0;1;2). Also, we re-
strict the range of displacements to within a local 3 × 3
region, whose center is the reference point r, because the
correlation within a local region is generally much higher
than the correlation between distant points.

By eliminating displacements that are equivalent because
of an even shift, we reduce the number of the displacement

patterns to 25. Fig. 4 shows the 25 types of local displace-
ment patterns, where “black” represents pixels to be exam-
ined while “white” represents “don’t care”.

Figure 4: Local 3 × 3 masks up to the second order

Hence, HLAC features are obtained by once scanning the
whole image over P2 with the 25 local 3 × 3 masks and by
computing the sums of the products of the gray values of
the pixels corresponding to “black”. HLAC features form
an initial geometrical feature vector x, and the dimension
m is 35 for a gray-level image and m is reduced to 25 for a
binary image due to the idempotents of product.

HLAC features are obviously additive for isolated ob-
jects on P2, satisfying C2. Also, they are shift-invariant,
satisfying C1, which makes the system robust to changes
in the position of objects within an image and therefore
segmentation-free.

6.3 MDA methods as F2

The initial HLAC features x j are general and primitive
and not necessarily adapted to a specified problem, how-
ever those in total contain enough information for given
tasks. Thus we reorganize those by linear combinations
so as to provide effective new features y i which are esti-
mates of measurements themselves or discriminant features
for recognition purposes.

y i =
m∑

j=1

aijx j (i = 1; : : : ; n ) (16)

In this second stage of statistical feature extraction, the op-
timum coefficients A = [aij ] for a task is determined by
using the MDA methods such as MRA or DA. The learning
process is fast, because it consists of calculating statistics
(means, covariances) of training examples f x g and solving
a matrix equation which explicitly gives the optimal coeffi-
cients in a closed form.

6.4 Some practical applications

Although the system is designed as the simplest version of
realizing the scheme, it has potential abilities as a fl exible
vision system, some of which will be shown in the follow-
ing examples of experimental results [16], [20].

The first example in Fig. 5 illustrates the effectiveness of
additive property C2 of the initial features. After each of
six patterns (in the left) is taught once, the system can an-
swer the numbers of each pattern in the image (in the right)
simultaneously by simply decomposing the feature vector
x of the image into those of learnt patterns as base vectors
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(Factor Analysis). Then the coefficients are the numbers by
virtue of additivity. It should be noticed here that the com-
putation is very fast in real time by a simple matrix multi-
plication shown in Eq. (16) (in this case y 1 through y 6 are
the numbers and A is determined from the six patterns), and
it is a constant time no matter how many objects the image
contains.

Figure 5: Simultaneous enumeration of multiple patterns

In Fig. 6 more interesting examples of application are
shown, which are the measurements of topological charac-
teristics (invariants) of binary images. The task is to count
the number of isolated objects or the number of holes in an
object. In this case single output y 1 is the answer and the
optimal coefficients are determined by MRA such that y 1

approximates in least squares the ideal answers which are
given in learning mode. After learning with 48 generated
sample images for each task, the system could correctly an-
swer to the new testing images which are shown in Fig. 6-a
and in 6-b. It is interesting to note that the system learnt the
Euler formula from the training sample images and utilized
it to answer quite correctly.

a) Number of objects b) Number of holes
Figure 6: Measurements of topological characteristics

It should be noticed that we never teach the system what
features should be taken for a given task and how to process,
but the system learns it adaptively and automatically from
training examples.

Recently, this system is easily implemented on an ordi-
nary PC and straightforwardly extended to be applied to
gray-level real images taken though a video camera in real
time.

7 Generalized HLAC and its Applications

The formulation of HLAC feature extraction is so simple
that it has recently been generalized in several ways to
be applicable to more practical, complicated, and difficult
tasks including color images and also motion images.

7.1 Recognition of Face and facial expression

We applied HLAC method to human face recognition [10],
[3], where HLAC features were extracted from the multi-
layered pyramid of input image. The recognition rate was
quite high, 99% for 116 persons [3].

The method is also applied to more difficult task of facial
expression [25], [13], where we used JAFFE facial image
database [11] which consists of 7 facial expressions of 9 fe-
males (See Fig. 7) and obtained high recognition rate, about
80%. In [13] HLAC and the FA described in Fig. 5 are used
to identify simultaneously person and facial expression.

On the other hand, in [25] HLAC and DA are used,
and HLAC is expanded to weighted sum in order to adapt
HLAC to local importance of face image over P2. The op-
timal configuration of the weights, called “ Fisher weight
map” , is adaptively obtained in DA. It is seen that the areas
of eyebrows, cheeks, and lips have greater importance for
recognition of facial expressions (See Fig. 8).

It is noted that the formulation is so general to include
the Eigen-face and Fisher-face methods as special cases.

Figure 7: Some examples in JAFFE Database

Figure 8: Obtained Fisher weight maps (eigenvectors) �@

7.2 Color HALC and robust tracking

Tracking is one of the most fundamental methods for mo-
tion image processing. Most of usual methods are based
on segmentation of moving object and template matching,
and identification is measured at the pattern (image) level.
In the real-world environment, however, objects are so of-
ten occluded by obstacles, and which makes the methods
difficult to be robust and reliable.

So as to realize robust and reliable tracking, it is better
to measure similarity (matching) not at the pattern level but
at the feature level. From this viewpoint, we applied Color
HLAC features to tracking [7]. Because, color is also im-
portant feature to identify objects as well as object shape.

For color images, HLAC is extended by replacing
the pixel gray value (scalar) with the pixel color values
(RGB/HSV 3D vector). The dimension becomes combi-
natorially very high, thus the order of Color HLAC is trade
off with the dimensionality.

Our method utilizes the background subtraction and the
additivity of Color HLAC (dividing image to subregions
and merging), and adopts k-NN decision rule. Experimen-
tal results show that the method quite robustly track moving

437



objects even when those are occluded by obstacles or cross-
ing each other.

7.3 Cubic HLAC

For a motion image, HLAC feature vector forms a trajec-
tory x(t) in the vector space. Therefore motion features
will farther be extracted by characterizing the trajectory in
a more global term T . One intuitive way is to apply ARM to
the trajectory, and which was applied to gesture recognition
[5]. Another more direct and intensive way is to expand
HLAC itself straightforward to 3D case [8]. The latter is
called Cubic HLAC (hereafter denoted by CHLAC).

CHLAC is applicable to any form of three-way data, i.e.
3D (x ; y ; z ) data. The features are extracted by scanning
the whole data X × Y × Z (P3) with a 3 × 3 × 3 local
cubic mask patterns (Fig.9). The dimension of CHLAC up
to the second order is 279 for scalar data and degenerated to
251 for binary data. For motion image, we consider z = t
(time) and Z = T is the width of a time-window.

Figure 9: Example of mask pattern of CHLAC (h r’ b” )

7.3.1 Recognition of motion and gait

CHLAC is applied to motion and gait recognition in [8],
showing effective performance (99.9% for 4 types of moves
of 5 persons). There, input images are converted to binary
ones by frame difference and thresholding, and CHLAC
features are extracted and DA follows. Classification is
based on the simple minimum distance decision rule.

CHLAC features also inherit the important properties,
shift-invariance (rendering the method segmentation-free)
and additivity as well as HLAC, and are robust to noise in
data. Moreover, the method utilizes no a priori knowledge
nor heuristics about objects such as human shape and an-
gles of legs, etc.

Recently, we applied the method to the NIST gait dataset
[24] and compared the identification result to those of the
other methods. The dataset consists of 456 video sequences
of 71 individuals, walking around the elliptical course. The
result shows that our method is superior to other methods
in spite of simple feature extraction and classification [9].

Figure 10: Comparison of gait recognition methods

7.3.2 Detection of abnormal movement

The detection of abnormal (unusual) movements in scenes
is a crucial and urgent issue in video surveillance applica-
tions for security. For example, if abnormal movements of
persons are automatically detected and screened, it saves a
lot of labor for human to monitor all the time.

For detecting abnormal movements, systems need to rec-
ognize those. However it is almost impossible to learn all
the examples of rare abnormal (unusual) movements in ad-
vance. Nevertheless, we can define abnormal movements
as not being normal (usual) movements that are frequently
happening in front of a camera. Therefore, abnormal move-
ments can be detected only by learning normal movements
statistically.

Based on this idea, we proposed an unsupervised method
for abnormality detection in scenes containing multiple per-
sons (See details [12] in this conference). Our method uses
CHLAC (Cubic HLAC) to extract features of movements
and utilizes a subspace method to detect abnormality. One
particular advantage of this method is that it does not ne-
cessitate the object segmentation and tracking and also any
prior knowledge about objects.

Actually, CHLAC can extract features of multiple per-
sons’ motions without segmenting and tracking each per-
son (due to shift-invariance), and the computational cost is
constant regardless of the number of persons. Furthermore,
the additive property of CHLAC in combination with a lin-
ear subspace method is well suited to simplify the learning
of normal movements and the detection of abnormal move-
ments even in scenes containing multiple persons. Namely,
all the normal movements are included in the subspace of
normal movements even for scenes containing multiple per-
sons’ moves, and only abnormal movements depart from
the subspace. Thus, once the subspace of normal move-
ments SN is constructed by using PCA for example, abnor-
mality is easily detected by measuring the distance between
an input feature vector x and SN .

The distance d ⊥, which is used as index of abnormality,
is easily calculated as

d ⊥ = ‖P⊥x‖ (17)

where P⊥ is the projector onto ortho-complement subspace
of SN and easily calculated by using the eigenvectors.

An experimental result is shown in Fig. 11, where it is
seen a tumbling movement (abnormal) of a person in the
scene containing two other persons’ walking (normal) is
successfully detected as an abnormal movement.

Figure 11: Example of abnormality detection.

For more practical uses, it is noted that the method is also
implemented for on line and real-time learning and detec-
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tion by incrementally solving the updated eigenvalue prob-
lem or by incrementally approximating the eigenvectors.

8 Concluding Remarks

An approach to fl exible and intelligent vision systems has
been discussed, showing a general framework of visual in-
formation processing and also of pattern recognition.

It was emphasized that intermediate representation, or
feature vector representation, is crucial to smoothly bridge
patterns (at signal level) to numerals (at measurement level)
and also to symbols (at recognition level).

Another important point emphasized is the two stages
of feature extraction in the general framework of pattern
recognition; namely geometrical (invariant) feature extrac-
tion as the first stage, and statistical (adaptive and discrim-
inant) feature extraction as the second stage. Theoretical
foundations for the two stages have been shown. The for-
mer geometrical stage is formulated by Lie group theory
and partial differential equations, while the latter is formu-
lated by Bayesian estimation in the ultimate, and by MDA
methods, NN, or kernel MDA in the approximations.

As a simplest implementation, we showed a scheme of
vision system comprising HLAC and MDA, demonstrat-
ing its fl exible and intelligent performance. HLAC has
been straightforwardly expanded to CHLAC (Color or Cu-
bic HLAC) so as to farther cope with color and/or motion
images. The effective performance has been shown for ac-
tual applications such as motion or gate recognition, track-
ing, and abnormality detection in video surveillance.

These results present the potential prospect of the scheme
towards fl exible and intelligent vision systems.
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