
A robust active contour initialization and gradient vector fl ow
for ultrasound image segmentation

C Tauber, H Batatia, A Ayache

IRIT-ENSEEIHT, Toulouse, France

Abstract

Speckle and low contrast make ultrasound image
segmentation a difficult task. This paper presents
an original robust active contour energy and the
corresponding quasi-automatic initialization. Both are
based on the coefficient of variation gradient vector fl ow.
Our approach combines anisotropic diffusion with the
gradient vector fl ow field. The gradient vector fl ow is
calculated from a map of the amplitudes of the coefficient
of variation. This makes it more robust to speckle. The
centers of divergence are calculated and used to initialize
the active contour model. The method has been tested on
different echocardographic images. The results presented
are very encouraging.

1. Introduction

Ultrasound (US) imagery is characterized by low signal
to noise ratio, low contrast between tissues and speckle
contamination causing erroneous detection of cavities
boundaries. Active contour models (snakes) deal with
some of these limitations. They consider boundaries
as inherently connected smooth curves. A snake is a
curve that evolves from an initial position towards the
boundary of an object, minimizing some energy functional
[1, 2, 3]. A B-spline snake is an energy minimizing
spline parameterized by its control points. The smoothness
of the snake is implicitly given by the B-spline model
[4, 5, 6]. The energy consists in two terms: the internal
energy and the external energy. The first affects the
smoothness of the curve, and the second attracts the snake
toward image features. A number of external energy
terms have been proposed [7, 8, 9] . Most of these
approaches either use gradient information or global image
statistics. Among them the gradient vector fl ow field
introduced by Xu [9] has the inherent property of being
able to reconstruct subjective contours. These contours
are edges that are not actually present in an image, but
are perceived nevertheless. This characteristic is very
attractive for US imagery where connected boundaries are
less likely to be found. However this method cannot be

used efficiently for US imaging because of the presence
of speckle. A novel method for anisotropic diffusion of
ultrasound images was introduced in [10]. It uses the local
coefficient of variation (LCV) [11] and a robust diffusion
tensor to filter echographic images. The LCV is computed
locally and compared to the global coefficient of variation
(GCV). In homogeneous areas affected by speckle LCV
is close to GCV. Near edges LCV becomes greater. This
diffusion technique was successfully used in [12] as a
pre-step for segmentation of the heart cavities in US
images. However this B-spline snake method is difficult
to initialize. It is well known that the snake initialization
accuracy infl uences significantly the segmentation. Using
primer contour as the snake initialization have been
proposed in [13, 14], multi-scale approach was proposed
in [15], balloon snakes and GVF were proposed in [2, 9].

In this paper we derive a new gradient vector fl ow based
on the amplitude of the coefficient of variation, called
Speckle resistant Gradient Vector Flow (s-GVF). First we
use a robust anisotropic model to filter the US image. Then
we generate an image of the LCV amplitude which is used
to generate the s-GVF. The s-GVF centers of divergence
are used to develop a quasi-automatic curve initialization
and the s-GVF is used to attract the B-spline snake toward
the cavities boundaries.

The remainder of this paper is organized as follows. We
present the s-GVF in section 2.1. In section 2.2 we present
a new model for quasi-automatic initialization of the B-
spline snake. The results are shown in section 3, and a
discussion and conclusion can be found in section 4.

2. Methods

2.1. The speckle resistant gradient vector
fl ow

To generate the s-GVF we first apply anisotropic
diffusion described in [10] to generate a coefficient of
variation amplitude map. The anisotropic diffusion is
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performed by solving the following PDE :

{

δI(x ,t)
δt

= div[g(γ(x, t))∇I(x, t)]

I(x, 0) = I0(x),
(

δI(x,t)
δ~n

)

|δΩ = 0
(1)

where γ is an estimation of the LCV, d iv stands for the
divergence, ∇ denotes the gradient, I0(x) is the original
image intensity of the pixel x, δΩ is the image domain
border, ~n is the outward normal vector of δΩ, and g(γ)
is the diffusion tensor defined as :

g(γ)i,j =

{

[

1 − γ2(i,j ;t)
γ2

s
(t)

]2

if γ(i, j ; t) ≤ γs(t),

0 otherwise.
(2)

where γs =
√

5γe and γe is a robust estimation of the LCV
interception term :

γe(t) = c m e d
(i,j )∈Ω

(|γ(i, j ; t) − m e d
(i,j )∈Ω

(γ(i, j ; t))|)

+ m e d
(i,j )∈Ω

(γ(i, j ; t)

whith c = 1.48 2 6 . The diffusion stops when image Ite

i,j

is considered stationary, i.e. when γe(te) ≤ ε, a small
positive threshold defined empirically. Figure 1(b) shows
result of this method. We then calculate the contour image

Iγ(i, j ) =

{

γ(i, j ; te) if γ(i, j ; te) > τ ,

0 otherwise. (3)

Figure (fig.1) (c) shows an example of such image. The
gradient amplitude of the final image is used to compute
the s-GVF.

(c) LCV amplitude image(b ) dif fus io n  res ult(a) I n itial image

Figure 1. (a) Original image. (b) Diffusion filtered image
using LCV and a robust tensor[14]. (c) Thresholded LCV
image

To generate the s-GVF g v (x , y ) = [u (x , y ), v (x , y )] we
use the classical GVF energy minimisation equation [9]
but replace the gradient amplitude with the LCV gradient
amplitude resulting from the anisotropic diffusion:

E =

∫ ∫

µ(u 2
x+u 2

y+v 2
x+v 2

y)+ |∇Iγ |2|v−∇Iγ |2d x d y .

(4)
where ux, uy , vx and vy are the partial derivative of
corresponding functions and µ a regularization parameter.

Discretizing using the Euler equations leads to an iterative
resolution where :

un+ 1
i,j = (1 − g2

i,j ∆t)un
i,j + r(ui+ 1,j + ui−1,j + ui,j + 1

+ui,j−1 − 4ui,j ) + ch
i,j ∆t

vn+ 1
i,j = (1 − g2

i,j ∆t)vn
i,j + r(vi+ 1,j + vi−1,j + vi,j + 1

+vi,j−1 − 4vi,j ) + cv
i,j ∆t

with :

g2(x, y) =
∂ Iγ(x, y)

∂ x

2

+
∂ Iγ(x, y)

∂ y

2

(ch(x, y), cv(x, y)) = g2(x, y)

(

∂ Iγ(x, y)

∂ x
,
∂ Iγ(x, y)

∂ y

)

r =
µ∆t

∆x∆y

Figure 2(a) presents the s-GVF of the right auricle of the
US image (fig.1(a)). Using the LCV gradient instead of
the intensity gradient improves the precision and stability
of the field : the s-GVF is smooth and points toward the
cavity boundaries without being affected by speckle.
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(a) CVGVF of the right auricle (b ) Z oom  on  the CVGVF of the right auricle

Figure 2. (a) GVF of the bottom right part of the US image
(b) Zoom in the right auricle cavity

2.2. Curve initialization

We propose a quasi-automatic method to initialize the
snake. First we propose a generalization of the centers of
divergence (CD) introduced in [16]. Let sig n be a function
defined as :

sig n (x ) =







1 if x > 0
0 if x = 0
−1 if x < 0

(5)

The vertical and horizontal CD are defined as

C d i = {(i, j )|u(i, j ) ≤ u(i + 1, j )

∧ |sig n (u (i, j)) + sig n (u (i + 1, j))| ≤ 1}
C d j = {(i, j )|v(i, j ) ≤ v(i, j + 1)

∧ |sig n (v (i, j)) + sig n (v (i, j + 1))| ≤ 1}
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we propose two different definitions for the CD set :

Cdstrong = {(i, j)|(i, j) ∈ Cdi ∧ (i, j) ∈ Cdj}(6)
Cdw e a k = {(i, j)|(i, j) ∈ Cdi ∨ (i, j) ∈ Cdj}(7)

As presented in [9] the GVF (respectively s-GVF) attracts
the snake to the curve, even if the snake is not close to the
contour to be detected. However this does not completely
solve the initialization problem : if all points of the initial
curve are closer to a part of the boundary, the curve is
entirely attracted to it (fig.3).

Deformation in progress,  iter = 75

(a) snake initialization (b ) snake ev olu tion u sing  G V F (d ) resu lt of seg m entation

Figure 3. Exemple of a bad initialization using the GVF.

A solution is to use the CD of the s-GVF : the
region delimited by the initial curve should include all the
Cdstrong of the cavities and its shape skeleton should be
the Cdw e a k connecting those Cdstrong. This is done by
manual or automatic selection of a point p in the cavity,
then using the inverse s-GVF to reach the closest Cdstrong

:
W h ile(p /∈ Cdstrong) p← p− gv(p ); (8)

Once a point ps ∈ Cdstrong is found, we select all
the Cdstrong connected to it via Cdw e a k points. We
use a morphological dilatation of the connected path and
extract its boundary. This is the initialization of the curve.
This method benefits the closeness of weak centers of
divergence to the skeleton of the objects in the image.
Thus we can generate an initial curve directly related
to the shape of the cavity to be detected, ensuring that
all parts of the initial curve will be attracted toward
different directions. Figure 4 shows an example of a snake
initialization for a synthetic image.

(a) Initial image (b ) C V G V F (c ) W eak  and  S tr o ng C D

Figure 4. Weak and strong centers of divergence of a
synthetic image, and the corresponding snake initialization

3. Results

The model has been applied to an ultrasound video
sequence of the four cardiac chambers view of a 12 weeks

old foetus 1. We segment the right auricle which contains
only one strong center of divergence. We also present the
result on a US image of the same view of a grown up
person 2. In this image we segment the left ventricle which
contains 2 strong centers of divergence. Both experiments
use the B-spline snake algorithm presented in [12]. We use
our quasi-automatic initialization presented in this paper.
The s-GVF is used as a second external energy to attract
the snake toward the boundaries.

Figures 5 and 6 contain 3 images : the initial image, the
selected point and the initial snake, and the segmentation
result. The results show that the initialization is correct and
that the s-GVF is efficient to detect the heart cavities.

4. Discussion and conclusions

We have presented a new method for active contour
initialization and an adaptation of the gradient vector field
to images affected by speckle. Unlike other approaches,
the s-GVF uses the local coefficient of variation (LCV) to
improve robustness to speckle. The method proposed is
quasi-automatic as it requires the selection of one point
inside the cavity. When applying the method over a
video sequence, it is possible to use the centre of gravity
of the final curve as the next frame initialization. The
experimental results on echocardiographic images are very
encouraging. This method is being used to develop a novel
robust method to segment echographic images affected by
speckle.
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(a) Initial image (b ) S nak e initializ atio n (c ) R es u lt

Figure 5. Detection of an auricle containing one strong center of divergence.

(a) Initial image (b) Snake initialization (c ) R es u lt

Figure 6. Detection of a ventricle containing two connected strong centers of divergence.
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