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Abstract

We propose to develop a tracking algorithm of objects 
or humans, based on kinematics, with a fixed monochro-
matic camera, without any knowledge on the sequence: 
size, shape or number of objects are unknown and can 
evolve with time. For this purpose, we first make a motion 
detection, then, as we suppose that people move locally in 
a consistent way and thus draw a regular trajectory in the 
spatio-temporal space, we modelize locally the 3D moving 
points by a mixture of Gaussians where each Gaussian 
represents a trajectory. These points described only by 
their coordinates (x, y, t) are clustered with the Classifica-
tion Expectation-Maximization (CEM) algorithm. We will 
shown on tracking results, that this method based only on 
kinematics, manages the number of objects to track, occlu-
sions and poor segmentations (over- or under- 
segmentation). 

1  Introduction 

In this paper, we address the problem of segmenting, 
detecting, and tracking several targets using a monochro-
matic fixed camera and by considering only the kinematics. 
Usual approaches consist in tracking the objects time after 
time, using the result of the previous iteration. We can 
mention as example the JPDAF algorithm [1], methods 
based on particles filters [2] or methods based on layer 
representation [3]. They are robust but have several draw-
backs relative to their initialization: where are the targets in 
the first image and how many are they? How manage an 
evolutionary number of objects? How deal with over- or 
under-segmentations? 

In our approach, to deal with occlusions and bad seg-
mentations, spatio-temporal points detected in movement 
are considered in a global way, during several frames. 
Among all these pixels, we look for those that form a co-
herent shape in the spatio-temporal space and group them: 
pixels that represent physical points describing a steady 
trajectory, form a regular volume in the space (the section, 
at a given time, represents the shape of the target). In our 
approach, each volume is modelized by an ellipsoid with 
its center and its covariance matrix and is obtained with the 
Classification Expectation-Maximization (CEM) algorithm 
[4], which is a modified version of the usual Expecta-
tion-Maximization (EM) algorithm. 

Several authors have already used this EM algorithm in 

this context. Tao et al. [3] use the EM algorithm and a dy-
namic layer representation to jointly estimate object 
motion, ownership and appearance. In these works, an ex-
ternal module makes the initialization and the number of 
targets is fixed during the sequence. 

We can also mention C. Bregler [5] who recognizes hu-
man dynamics in video sequences. To do that, the first 
image is segmented in blobs of coherent motion and color. 
This is done using the EM algorithm (image is seen as a 
mixture of coherent blobs). Next images are segmented 
using the same method expected that blob parameters are 
initialized using the previous frames: based on parameters 
of the Gaussian distribution at time t-1 ( t-1), a Kalman 
filter computes the predicted mean and covariance of t,
which are used as priors for the new E.M. iterations. This 
method can be seen as propagating a multinomial distribu-
tion (mixture of Gaussians) of the system state t through 
time. So, segmentation and tracking are treated as the same 
problem.  

Raja et al. [6] have a similar approach: color densities of 
the tracked object are approximated by Gaussian mixtures 
that are dynamically updating with time. In [7], Heisele et 
al. segment the first image of the sequence in blobs based 
on color. For each new image, a parallel k-means cluster-
ing algorithm adapts clusters of the previous iteration. 

These three last methods suppose that the number of 
objects is known and constant along the sequence. They 
track targets time after time and don’t have a global ap-
proach by integrating several frames of the sequence.  

In [8], Greenspan et al. extract coherent space-time re-
gions using Gaussian mixtures to represent and index 
video. The feature space possesses six dimensions : color 
information (L, a, b), spatial information (x, y) and time (t). 
So, they analyze video input as a single entity as opposed 
to a sequence of separate frames.  

We use here the same approach but only on spa-
tio-temporal data (x,y,t) in order to develop a tracking 
algorithm based on kinematics. This last one, for which 
any initialization is required, will be achieved without 
knowledge about the shape of objects, their size or their 
number. Moreover, the object number can evolve during 
the sequence (appearance or disappearance of objects). 
Moreover, we wish to deal with occlusion and under or 
over-segmentations. The algorithm is presented in section 
2 and results will be shown in section 3 before a conclu-
sion. 
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2 Presentation of the method 

For the tracking at the time t, the algorithm presented
figure 1, works on a sliding temporal window centered on t
and comprising lw frames. All images between
and are considered but the decision is made only 
for the time t. For each image, a motion detection is 
achieved by subtracting the current image from a reference
one. Pixels are introduced in a Markovian relaxation [9] to
improve an initial coarse thresholding. A labeling of con-
nected components is then performed to obtain regions. As
we suppose that people move locally in a consistent way,
points of  the temporal window detected in motion form
regular volumes in the spatio-temporal space. These 3D 
moving points are assigned to a mixture of Gaussians (each
Gaussian representing a trajectory) with the Classification
Expectation-Maximization (CEM) algorithm. It is a modi-
fied version of the EM algorithm, which accelerates the 
computing time by considering binary ownerships. To up-
date the tracking at the time t, we consider all points
between  and .

- / 2t lw
/ 2t lw

-t l / 2w / 2t lw

Among them,
- points before the time t have already been assigned to

Gaussians in a sure way (these decisions will not be
updated).

- points between t and t+lw/2-1 have also been assigned
to Gaussian in the previous iteration. These assign-
ments could evolve during this step of the CEM
algorithm.

- Points at t=t+lw/2 are initially assigned to new Gaus-
sians to allow entrance of new objects in the scene.

The convergence of the CEM algorithm, for a temporal
window, leads to the number of Gaussians and their pa-
rameters for the central time of the window. The synoptic
of the algorithm is presented figure 1. More details con-
cerning these different steps will be given in the next
paragraphs.

2.1 New Gaussian creation 

For the time t, we are interesting by all 3D points be-
tween -t lw 2 and 2t lw . Only points at 2wt l are
new and can generate new trajectories. They come from 
the motion detection computed in the frame at t= 2t lw
and have been labeling. Anew Gaussian is created for each
region in this image (a region contains often several points).
The means k k k k( , , )x y t of each new Gaussian can
easily be computed while the covariance matrices k are
initialized by heuristics to the identity matrix multiplied by
3. It corresponds to a spherical volume in the spa-
tio-temporal space. 

2.2 A CEM step 

We detail below a step of the CEM algorithm. Data, 
which are R3 valued vectors i i i( , , ), 1x y t i Nx are
supposed to be a sample of a mixture of density:
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where pk are the mixing coefficients which should add 

up to 1, f(xi,ak) denotes the 3-dimensionnal normal density

function with unknown mean k and covariance matrix k , 

ak = ( k, k) are Gaussian parameters to be estimated and K

is the number of Gaussians.

The CEM algorithm computes the estimates pk and ak
(for k = 1… K ) and finds a partition  = ( 1, 2, … , K) of
data. This algorithm, which is a classification version of
the EM algorithm, incorporates a classification step be-
tween E step and M step using a Maximum A Posteriori
(MAP) principle. It starts with an initial partition 0 ob-
tained with:
- the tracking results at the previous iteration for

points belonging to .[ - / 2, / 2 -1 ]t lw t lw
t t- the affectation to new Gaussians for / 2lw .

It iterates then:
E step: compute, for all points xi such as i and for 

k=1… K the current posterior probabilities h
t t
k
m(xi) that xi

belongs to k:
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from the current parameter estimates pk
m and ak

m.

C step: All point xi before the time t preserve their
affectation to Gaussian. The other points are assigned to
the class which provides the maximum posterior
probability hk

m(xi), k=1,… ,K. Let 
m the resulting

partition.

Figure 1 – Synoptic of the algorithm
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M step: for k=1…K compute the maximum likelihood
estimates (pk

m+1, ak
m+1) using the sub-samples k

m.
The computation of pk

m+1 is obtained by introducing
higher-level information:

- The first segmentations in regions, computed in each 
image are employed: 3D blobs (or Gaussians) composed
of points belonging to a coherent region will be more prob-
able. A coherent region is such as its pixels belong in
majority to the same blob. This concept avoids such mis-
takes as, for example the independent following of the bust
and the legs of a person, while allowing occlusions.

- A Gaussian is more probable if its pixels are spaced
out in time; a trajectory will be preferentially composed by
several frames.
The mixing coefficients taking into account this a priori
information will be:
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where NRk is the number of

regions with at least one pixel in the class k
m ; Ni is

the number of pixels of the region i and Nk,i is the

number of pixels belonging to the class k
m and to the

region i.
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where lk is the number of discrete times

where the class k is present.

The CEM algorithm is iterated while the log-likelihood
varies. This latter is defined by:

1 1

ln ( , )
N K

K k

i k
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This CEM algorithm looks like the k-means algorithm
except that the latter uses Gaussian mixture with equal
proportions and a common covariance matrix of the form

2I .

2.3 The merging step 

In order to remove false Gaussians (those that does not
correspond to real trajectories and have been introduced for
example by points in the last image of the temporal win-
dow), a fusion step is added. A couple of Gaussians can be
merge if: 
- one of the two Gaussians begins after the time t (two
Gaussians beginning before the time t can not be merged
because it would change results obtained before this time).

- if one of the two Gaussians starts before time t, its
temporal duration must be higher than lw/4 (empirical
value). Indeed, the covariance matrix of the 3D points
represents their dynamic only if the points are enough. 
- among all couples of Gaussians which verify the pre-
vious conditions, we look for the one that minimizes after 
fusion the Bayes Information Criterion (BIC) defined by
Schwartz [10]:

( ) 2 ln( )M MBIC M L Q N

where M is the number of Gaussians, QM is the number of 
free parameters and LM is the log-likelihood. If the fusion
of this couple of Gaussians leads to:

( 1) (BIC K BIC K ) , then, both Gaussians are merging
(this last condition is not necessary if a new Gaussian in-
cludes less than three points).

The number of Gaussians (K) is thus progressively de-
creased until the BIC criterion does not decrease any more.
The number of trajectories has then been reached and the
temporal window is sliding to the next time.

3 Results 

Several results obtained on real sequences will now be
presented: a color represents each track. Images have been
sub-sampled by a factor 10, and only one image out of two
has been considered, in order to reduce the computing time.
Let us recall that data are composed by all the spa-
tio-temporal points (xi,yi,ti) detected in movement. For both
sequences, the length of the temporal window lw was fixed
to 50 frames.

On the left, an image
of the sequence. 

On the right, two
views of the 3D result.
All points are repre-
sented in the
spatio-temporal space
(x,y,t).

Figure 2. Result on the first sequence 

The first sequence (figure 2) composed by 120 frames,
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consists in the tracking of two people, who are crossing,
one evolving from the left to the right, the other in the op-
posite direction. 17.322 points are detected in movement.
Both persons are very bad segmented due for example to
the pipes in the bottom of the wall (no size criterions have
been introduced on region to keep the generality of the
method). On average, four regions per image compose
each person and lacks of detection appear often. Examples
of poor motion segmentation are shown on figure 2, on the
second view of the result: in the track 2, holes correspond-
ing to lacks of detection, appear. Four tracks have been
obtained. One is correct (track 1), the second has been
broken in two (track 2 and 3): during the beginning of the
sequence, the feet of the corresponding person are always
detected as an isolated region. A track is thus created for
these feet.  It disappears when feet and body are detected
as a same region. The only way to avoid this problem
would be to introduce a model of object to track but in
these conditions, the algorithm becomes dedicated to a
specific application. The track 4 corresponds to noise: dur-
ing few images, a shadow was detected like a moving
region. To solve this problem, higher order features de-
pending of the application have to be introduced.

It should be noted that occlusion are correctly managed
on this sequence because the temporal window is large
enough. Generally, this length must be at least four times
higher than the length of the occlusion. If it is not the case, 
a new trajectory is created after the occlusion. There is a
duality on the length of the temporal window: it must be
large enough to cross occlusions but must remain suffi-
ciently small to keep a steady movement.

Figure 3. Result on the second sequence 

The second sequence (figure 3) represents two persons
who are crossing and turning back. It is composed by 226
frames and 48.899 points. The first segmentations are still
very poor with over-segmentations and lacks of detection.
Results show that the trajectories of the two people have
been correctly determined (track 1 and 2). One can notice
however that two additional tracks appear (tracks 3 and 4)
which correspond to shadows detected during the segmen-
tation. It is thus correct to not assign these points to the
true trajectories. Characteristics of higher level will have to
be introduced to separate the true tracks from the noise (on
this sequence, a criterion of minimal length of a track
would be enough to solve this problem)

4 Conclusion 

An algorithm making the tracking of targets without any
a priori knowledge (initialization, size, color, shape, …) is 
presented. It uses only kinematical information by consid-
ering that targets move in a locally steady way and thus
draw regular trajectories in the spatio-temporal space. All 
3D points (xi,yi,ti) detected in movement during a first step
are assigned to a mixture of Gaussians with the Classifica-
tion Expectation Maximization (CEM) algorithm.  Each 
Gaussian represents locally a consistent trajectory and
evolves with time. As no a priori knowledge is employed,
false trajectories corresponding to noise or shadows are
detected; they could be removed by introducing
higher-level features. In a same way, when an object is 
always split up in two regions during the segmentation,
two tracks are created, one for each part of the object.
This result is also coherent and only a model of the object
to follow will be able to merge these two tracks. Results on
two real sequences of moving persons who are crossing
have been presented. We have shown on these sequences
that this algorithm, which is totally autonomous, deals with 
occlusions and poor segmentations.
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