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Abstract 

The hackgro~ind s~ihtraction is a common method 
for real-time segmentation of moving targets in image 
sequences. This co~ild he a true image without moving 
ohjects. Howewr, often a hackgro~ind f r e  of moving 
ohjects is not, available, therefore a model sho~ild he 
employed. Most of the research works dealing with a 
hackgro~ind model cope with its updating, hut not with 
its initialiyation. In this paper we propose an original 
method which is ahle to effectively extract a reliahle 
stationary hackgro~ind having at disposal a short se- 
quence with an  ind determined n~imher of foreground 
ohjects. It is hased on the improving of a likelihood- 
hased hackgro~ind model hy using information ahout 
reliahle stationary pixels achieved through a simple 
motion detection algorithm. 

1 Introduction 

A monitoring system. as well as a vis~ial sarveillance 
system. initiates targets identification hy determining 
which parts of each image in a sequence helong to n~ov- 
ing ohjects and which to  the hackgro~ind. Background 
differencing is an effective technique apt to detect mov- 
ing pixels when seqliences come from a stationary cam- 
era. .4 common way to accomplish this step consists of 
examining the difference in pixel intensities hetween a 
stationary hackgro~ind and each new frame. Thus, this 
method relies on the feasibility to have a hackgro~ind at  
disposal. Nevertheless. in real cases this is often impos- 
sihle. Us~~ally. many algorithn~s depend on the feasihil- 
ity of ohtaining a hackgro~ind hy using a short training 
seqnence free of foregrolind ohjects. Nevertheless, in 
red  cases this is often impossihle. Few researches have 
h e n  dedicated to the prohlem of hackground initial- 
i7ation (or boot~trapping, as we read in [I]) and none 
of them ~ises the approach we use. 

The method we use allows generating a stationary 
hackgro~lnd having at  disposal a short seqlience with 
an undetermined number of foregro~lnd ohjects. To he 
precise. our method aims to est,imate for each pixel of 
every new frame of the model the intensity valrie to 
which that pixel has the maxim~lm posterior prohahil- 
ity. The earlier approach we ~ised relied on the simple 
ass~imption that the maximam n~imher of occlirrences 
which a pixel va111e will get during the training pe- 
riod is due to the hackgro~ind. However. this approach 
req~iired a long time in order to achieve a reliahle hack- 
ground n~odel. since it rdies on a hlind-update as- 
sumption. .4ct1ially, the method presented restricts the 
model update to non-moving pixels (selective-update). 
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In this way. the new val~ie of a stationary pixel, when 
such hecomes "moving", dow not alter the distrih~i- 
tion for that pixel and ns~ially the model strengthens 
its old hackgro~lnd mlrle. .4ltho1igh the method uses 
well known statistics, whirh are hased on Bayes The- 
ory, its application res~ilts in an original work. 

This paper is o r g a n i d  as follows. Section 2 deals 
with the approaches act~ially ~ised in most of the sys- 
tems. The probabilistic framework is o~itlined in Sec- 
tion 3 and an accurate description of the initialization 
method we use follows in Section 4. Flirther on. ex- 
tensive exqwriments accomplished on a challenging se- 
quence are shown in Section 5 and they assess the effec- 
tiveness of the initialization model. .4t last, Section 6 
draws concl~isions. 

2 Previous Works 

Many prohahilistic approaches in vis~ial s~irveillance 
tasks require a hackgro~ind model hefore starting the 
seqlience processing. Both the hackgrorind generation 
and ~lpdating are cr~icial tasks. In order to cope with 
s~ich problems, many authors have developed differ- 
ent methods, n~ostly are statistical. In this section we 
give an overview of the method ~lsed in most of the 
visnal s~lnleillance systems and of some interesting ap- 
proaches not yet incl~lded in any system. 

The work in [2] is a dated research hut it represents 
one of the first att,empts to reconcile stat,istic analysis 
and performance. In fact, here the hackgro~ind pixels 
are voted as the most frequent val~ie d~iring the image 
seqlience. In [3] a~ithors initialize the hackgro~ind hy 
using the median intensity val~ie for each pixel, thus 
relying on the ass~imption that each pixel will he visi- 
ble for more than fifty percent of the time during the 
training seqlience. In [4] authors implement a twn- 
stage method which is ahle to ohtain the hackgrorlnd 
even in the presence of eventnal moving foregro~ind oh- 
jects. In the first stage. a pixel-wise median filt,er over 
time is applied to several seconds of video in order to 
distinguish moving pixels from st,ationary pixels. In 
the second stage, only stationary pixels are npdated. 
Further on. a pixel-based method updates t.he hack- 
gro~lnd model periodically and an nhject-hased method 
updates the hackgro~ind to adapt to physical changes. 
The research in [5 ]  presents an algorithm which is ahle 
to learn a model of the hackgro~ind when moving oh- 
jects are present within the scene. Here, the input is 
a short monochromatic video seqlience in which any 
n~lnlher of moving ohjects nlay he present. Basically. 
a~ithors rise two n~ethods. jointly. The first is called 
"adaptive smoothness method" ([el) and starts hy find- 
ing intervals of stahle intensity. .After that, a he~irist~ic 
chooses the longest (i.e.. the most stahle) interval as the 
most s~iitahle to represent the hackgro~ind. The swond 



method 11ses the information ahollt motion in proxim- 
ity of the pixel: this will he discarded if any motion is 
toward itself. Finally, the stat,istical approach to hack- 
ground suhtraction in [7] relies on an explicit model of 
illumination change and noise of pixel values. .411thors 
formrllate the detection prohlem of ohject,~ entering the 
scene as a statistical decision prohlem involving the re- 
lation hrtween parameters of a reference image and the 
cllrrent frame. Here, they sllppose that the two images 
are taken under different illllmination conditions. In 
addition. the reference image has heen taken when j~ist  
hackgrollnd ohjects have heen present. 

3 Probabilistic Framework 

Before entering the details of ollr method, let 11s 
recall the principles of the Bayes Theory applied to 
Compllter Vision. In the following discllssion. as in the 
remaining part of this work, an image I is represented 
hy a 1-D vector which is nothing hut the original 2-D 
image which has heen sorted lexicographically. rJ is 
a pixel helonging to the image I, N = I I  is the total 
n~imher of pixels and I is a generic intensity gray level 
\va111e. 

Let XT = [r: . . .r', . . . r;] he a vector of samples 
for the pixel r , .  1 5 j < N ,  through frames 1. . . . , T, 
where T is the number of frames processed a. far. Let 
xi he the vector constit~lted hy the first t samples, 
1 5 t 5 T. The common form of Bayes Theory can 
he ex~ressed by Eq. 1: 

By analyzing each prohahility concerning our prohlem 
hy using histograms. we have: 

1 1 G-1 

p(i1a.T) = Fh,xT(i) = - T x h,,. (i), - x h,.?(i) = 1 
t=l ' ;=n ' 

(2) 

1 N-l  
pT (i)  = 7 1 hxr ( i) .  

,]=n ' 

Here, hXr( i )  is the t.empnral histogram of xT related 
1 

to the intensity gray level i. p(ila,T) is t,he con.ditionn1 
prohnhility density firn,ction (pcifl for a given z,, at time 
T to have the intensity value i and it is called the like- 
lih,ood of a,, with respect to i ,  at time T. This term in- 
dicates that: prior prohnhilitie~ P(2T) of choosing the 
pixel a; heing eqllal, position a,, for which at time T 
p(ilzT) being the largest is t,he most "likely" t,o he the 
trlie position. .4t last, pT(i) is the prior pdf to have at  
time T an intensity value 1:. The left side of Eq.(l) is 
called n posteriori (posterior) prohnhilitv and it shows 
that by ohserving the value i on the pixel a; we can 
convert the prior prohahility P ( a r )  to this posterior 
prohahility. 

4 Background initialization 

In our algorithm, the input is taken hy means of a 
stationary camera and it is a gray level sequence of few 

seconds, with an indefinite number of moving ohjects 
(e.g., cars and moving trws). The orltpllt of this hoot- 
strapping seqllence is an olltpllt model describing the 
static parts of the scene. 

The hasic idea which primarily inspired this method 
is that, during a reasonably long training sequence the 
most occilrring valrle for the pixel r, at  time T - 1 
shnrild reliably predict the most ~lnchanged vallle at 
time T, i.e., a likely hackgrollnd \ra111e. Namely. we 
must find the intensity valile i which the pixel rT-' 
has the m;lsimllm likelihood to. 

However, if one collld know which pixels of each 
frame shollld he inclllded in the hackgrollnd model B 
at time T, or hetter. which pixels reliably sho7~ld not he, 
it would he eno~lgh to let them out in order to faster 
reflect the real distrihrltion of the hackgrollnd vallles. 
Practically speaking. this means to estimate the pos- 
terior prohahility of y; with respect to the intensity 
vallle i. The prohlem is described hy expression (5): 

where ~ ( r r - '  J i )  is the posterior prohahility of Eq.(l) 
and hoth the distrihlltions p(ilrT-' ) and pT-' ( i)  are 
restricted to non-moving pixels. Strictly speaking. 
complitation can he simplified since .r, has the same 
prior prohahility P(.T:) for each f and j. When simpli- 
fied, Eq.(l) becomes (using histograms and considering 
the first T - I frames): 

h . x ~ - ~  (i)  
P(a;- l li) = , 

~,;=i' hx;- I (i) 
(6) 

Expression (5) states that estimating the vahle of 
B T ( r l )  (namely. the hackgrollnd pixel rJ for the frame 
T) means finding the intensity \,a111e i to which a given 
3: has the maximllm posterior prohahility. 

Non-moving pixels are determined t hroligh a "hack- 
ground detection" method and to this pllrpose any mn- 
tion detection technique is good. It, is worth remarking 
that the moving detection method collld he rough and 
not have heen previollsly tuned. In fact it sholild only 
reveal most of the moving pixels with a low missed de- 
tection rate. even though a lot of false signals colild 
he detected a 9  wdl. For example, to this purpose we 
use temporal frame differencing. Figlire 1 shows hoth 
the thresholded reslllt of the two-framcl difference (top) 
and the hinary image attained after applying our mor- 
phological operations ([8]) (hottom). IVP see how mor- 
phological operations enlarge the hlohs of the previolls 
image. Removing hoth noise and false stationary pixels 
is not a hard task if one is not interested in achieving 
well-defined moving targets. Tn fact, even though many 
hackgrollnd pixels are erroneoilsly det~cted  as moving. 
thus we can attain a hinary image where the entire 
"hlack" regions represent only tmle hackgrollnd pixels. 

What happens in case we 11s~ posterior prohahili- 
ties of Eq.(6) within a blind-lipdate model or even a 
model n~rongly lipdated by considering false station- 
ary pixels? I t  wollld not yield interesting reslllts, since 
p'(i) 'Lcorrects" the likelihood in an erroneorls way ([g]). 
Figlre 2 shows what happens after 10 frames. The 
error of the model increases rather than diminishing. 
Which is the reason? Because in c a s ~  of liniform pri- 
ors and ~lnder the same likelihood pdf. the posterior 



Figrire 1: hlotion detection achieved by means of the 
twn-frame difference algorithm (top). The same image 
as above after having been rorighly segmented through 
simple morphological operations (hottom). 

prohahility rewards pixels having an intensity i with 
the lowest pt(i). We can explain this concept hy a sim- 
ple example in a hetter way (the order of magnit~ide 
of the used nrimhers does not refer to  real cases). Let 
11s srippose that the pixel x: has the same likelihood 
p(ix:) = p(llx:) = 0.025 with respect to two different 
intensity valiies I .  1 helonging to the hackgro~lnd and 
to the foregroiind distrihiition, respectively. Let i he 
representative for the hackgrnrind. i.e., it has acciimii- 
Iated a high niimher of ocnirrences over time. for ex- 
ample pi ( I )  = 0.06. Let, / helong to a foreground ohject 
and he representative for the foregror~nd class. Since 
this distrihrltion over time becomes wider with respect 
to  the hackgrorind distrihrition, risiially p' ( I )  < p' (i). 
Here, if we srippose pt (1) = 0.04 then P(x: li) = 0.41 
and P(x:ll) = 0.62, hence P(x:ll) > P(x',(i). To con- 
cl~ide, the more i is representative for the hackgrniind 
the more I will have a larger pmsterior prohahility. In 
fact. in Figire 2, the foregrorind ohjects tend to persist 
within the model as the model hecomes stronger. On 
the hottnm right side of Figiire 2, we still see the stnic- 
t ~ i r e  of the car which appeared in frame 2 (the first of 
the model, fiirther shown in Figiire 4, top). This dis- 
cussion corild not he true in rase of a sequence where 
the static hackgrnrind is small with respect to larger 
foregror~nd regions covering it with peaked distrihii- 
tions for most of the frames of the sqlience. In any 
rase. this sitriation corild he not m ris~ial in oiitdoor 
environments. 

5 Experimental Results 

The test sqrience we iise (a sample frame is shown 
in Figrire 3, top) contains a cluttered daytime traffic 
seqlience which has hwn sampled at 10 Hz and is of 
210 frames. Images are 8-hit. gray le\rel, with resol~i- 

Figire 2: Frame 10 of the model estimated with the 
maxim~im a posteriori prohahility witho~it compensat- 
ing for the different distrihrition of hackgrorind and 
foregro~ind pixels 

tion of 384x288. The initialization algorithm has h e n  
written in ANSI C and works at 3 fps on a 800 MHz 
Pentiiim 111 PC. 

Figire 3: Frame 10 taken from t.he test seqnence (top). 
Frame 106 generated hy oiir hackgmlind model 

Figiire 4 shows two distinct frames of the model we 
conceived. The hlack pixels point orit n~orfing fore 
ground nhjects. The visiial effect is that the hack- 
gro~ind is revealing frame hy frame as the model he- 
comes more and more roh~ist. The hackgrorind im- 
age of Figrire 4, hottom, shows a different hehavior 
regarding vehicles which depends on their moving di- 
rection. While cars moving "towards the viewer" disap- 
pear faster, the harkgrorind model still ~indergoes the 
effect of the vehicles which start from frame 2 (Figire 4, 
top) and move away on the right side of the highway. 
In fact. they are farther and frw the hackgro~ind more 
slowly. Besides. hy comparing frames 2 and 10 we see 
that the set of hlack pixels in frame 10 appears to he a 
siihset of those of frame 2. Let 11s esplain this hehavior 
hy defining two distinct sitriations. The first is when a 
pixel 1, is moving at time t = 2 and hecomes station- 



Figl~re 4: Frames 2 (top) and 10 (bottom) estimated 
with the complltation of pi(i) and p(ilx:) restricted to 
non-moving pixels. Black pixels in frame 2 appears to 
he a sl~hset of those in frame 10 

ary at time t = k, k > 2. Here we want to stress that 
if r, is a moving pixel at time t = 2 (Figure 4, top) 
then p(ilr?) = 0,Vi. As soon as it hecomes stationary, 
p(i1r:) > 0 + p(x:/i) > 0, hence the hackgrollnd is re- 
vealed. This is the reason why hlark areas shrink. The 
second circllmstance occllrs when a hackgrolmd pixel 
r ,  is stationary at time T - 1 and hecomes sllhject to 
motion at time T. In this case, p(ilxT-') -- p(ilxT); 
therefore changes in posterior prohahilities are due only 
to pT(i). In fact, pT(i) differs from pT-I ( i)  in that 
pT(i) has accl~mlllated occurrences of intensity vallles 
for non-moving pixels. Usl~ally, pT(i) reinforces the 
model and P ( x r J i )  slightly differs from its values in 
the pre\,iols frames, thlls reslllting in a reliahle hack- 
grollnd valrle. This is the reason why hlack areas do 
not enlarge. We can verify the ahove analysis hy con- 
sidering the area helow the hhle line attached to the 
hottom side of the same car which persists in the fore- 
gror~nd in frames 2 and 10 of Figl~re 4. Below this line, 
the background vall~es are very sin~ilar. and this con- 
firms previol~s considerations. To conclllde. Figllre 3, 
hottom. shows the hackgrollnd achieved by ollr model, 
after that a few more than one hundred frames have 
hwn processed. It is completely free of moving objects 
and it can he r~sed as a reliahle hackgrollnd in fi~rther 
hackgrollnd differencing algorithms. 

6 Conclusions 

An original hackgrollnd initidiyation model ha9 
heen presented. It allows ohtaining a hackgollnd scene 
free of moving ohjects even in the presence of many 
moving targets. In addition, this model works also 
in the presence of a non-ron~plet~dy stationary hack- 
grollnd (e.g. showing waving tree phenomena). 

Based on the Bayesian Theory, the method allows 
exploiting the "evidence" coming out of single frames 
hefore they are prncessed in order to s p e d  11p the 
method hased on the likelihood prohahility. Practically 
speaking, infommation ahollt true statlonary pixels are 
employed in order to correct the likelihood prohahil- 
ity and to llse only reliahle hackgrollnd pixels in order 
to hrlild the model faster. A two-frame difference al- 
gorithm followed by simple morphological operations 
is enollgh to detect a reliahle hackgrol~nd. Therefore. 
simplicity joint to effectiveness makes ssl~ch method apt 
to a wide ni~nmher of scenes attained from different per- 
spectives and illllmination conditions. 
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