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Abstract 

As a first step to implement human hnctions related to 
visual attention in computer vision, we developed a com- 
putational model for calculating the saliency map of an 
input image. This model is based on the features obtained 
through K-L transformation of many images, and it ex- 
plains the memory-related asymmetrical effect in visual 
search: the search time for a familiar object among unfa- 
miliar ones is longer than the search time for an unfamiliar 
object among familiar ones. We conducted a psychophysi- 
cal experiment in which two subjects searched for "rotated 
2"s and "rotated 5"s for 10 minutes a day throughout a 
six-month period and found that visual perceptual learn- 
ing yielded an asymmetrical effect in visual search. 

1 Introduction 

Human vision does not process input information uni- 
formly. Visual attention focuses on a limited area (attended 
area) in the field of view and then shifts fiom one area to 
another, depending on the situation and task. Allocating 
computational resources intensively to the attended area 
enables rapid reaction. The aim of this paper is to suggest a 
model that can quantitatively calculate the degree to which 
attention is directed to a certain area. 

Visual attention has been studied through psychophysi- 
ca! experiments of visual search phenomena for years. In 
those experiments, subjects had to detect a target among 
several distractors . Treisman and Gelade [I] reported the 
results of those experiments. The reaction time was short 
and remained constant independent of the number of dis- 
tractors (pop out) in tasks where the target was 
distinguishable with respect to one feature, such as the task 
of searching for a green "T" among brown "Ys, or the task 
of searching for a green "T" among green "X's. In contrast, 
the reaction time increased in proportion to the number of 
distractors in tasks where the target was defined with re- 
spect to a combination of two features, such as the task of 
searching for a green "T" among brown "T"s and green 
"X's. 

Treisman and Gelade [I] developed the Feature Integra- 
tion Theory (FIT) through those experiments. According to 
FIT, the process of early vision is subdivided into two 
processes: the pre-attentive process in which primitive 
features of a visual stimulus are processed in parallel, and 
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the attentive process in which attention is focused on a 
certain area where several primitives, such as color and 
orientation, are integrated. 

Koch and Ullman [2] suggested a neural network model 
to describe visual selective attention. In their model, a 
so-called Wi~er-Takes-All network calculates the location 
into which attention should be shifted. Later, Itti, and Koch 
[3] firther developed this model and suggested a revised 
model that calculates a "saliency map", which topographi- 
cally codes for local conspicuity over the entire complex 
scene. They tested the validity of this model by applying it 
to real images. 

Wang, Cavanagh, and Green [4] found a psychological 
phenomenon that suggests parallel processing in the search 
for an unfamiliar target among familiar distractors, and 
serial processing in the search for a familiar target among 
unfamiliar distractors. Although this asymmetrical effect in 
visual search implies that the degree to which attention can 
be easily directed to a certain area of the image is influ- 
enced by visual experience, the model in the paper [3] does 
not cover this effect. 

In this paper, we suggest a computational model that 
calculates the saliency map of an input image based not 
only on the input image information but also on the mem- 
ory acquired through learning. This model determines 
primitives by using K-L transformation for many learning 
patterns, and it can simulate the asymmetry of visual 
search affected by memory. 

In the next chapter, we describe the ideas behind our 
model and an algorithm used in the model. In Chapter 3, 
we show the results of an experiment using real images in 
which we found that an asymmetrical visual search can be 
simulated. In chapter 4, we show the results of an experi- 
ment in which we found that a six-month-long visual 
experience yielded an asymmetrical effect in visual search. 

2 The model for calculating the saliency 

We hypothesized that attention can be easily attracted to 
areas having features that are different fiom those in the 
surrounding areas because the part of an image that has 
features that are different fiom those in other parts pops out, 
and that attention can be attracted to areas that have unfa- 
miliar features because the search time for an unfamiliar 
target among familiar distractors is critically short. 
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Based on these facts, we devised a model for calculating 
the saliency map of an input image. The model consists of 
a process of learning and a process of searching for un- 
known images. The configuration of our visual search 
model is shown in Figure 1. 

In the learning process, for each pixel of a learning im- 
age S(x,y), autocorrelation 

is first calculated as a shift invariant feature, where a and b 
are integers ranging from -N to N. This process extracts a 
(2N + 1)(2N + 1)-dimensional feature vector for each pixel 
in the learning image. We calculate the eigenvectors of 
the covariance matrix made from many feature vectors 
obtained in the way described above, and extract the basis 
of principal components from the largest eigenvalue up to a 
certain (e.g. 98%) cumulative contribution (K-L transform). 
The basis is saved as information that defines the feature 
that should be extracted in the search process. Thus, fea- 
tures extracted in a certain period of search time vary 
depending on the visual experience. 
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Figure 1. Model co~lfimration 

In the search process, a small window is scanned in the 
input image, and autocorrelation is calculated according to 
Equation 1. A feature vector is then extracted for each pixel, 
just as in the learning process. Then the vectors are ex- 
panded on the "memorized basis, and their coefficients 
are obtained. These coefficients represent the local features 
for each part of the image. The process is shown in Figure 
2. In the feature vector space, a subspace is defined by the 

principal basis that was extracted in the learning process. 
The feature vectors extracted for each pixel are projected 
onto this subspace. The projections are local features. 

Then we calculate the eigenvectors of the covariance 
matrix made from all of the projected feature vectors, and 
extract the basis of principal components from the largest 
eigenvalue up to a certain (e.g. 98%) cumulative contribu- 
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tion (K-L transform). Finally, the feature vector extracted 
at each point is projected onto the subspace spanned by the 
principal basis, and the distance between the feature vec- 
tors and the projected vectors (i.e., residual error) is output 
as the saliency at the point, as shown in Figure 3. 

3 Experimental results 

We conducted an experiment to evaluate the validity of 
our model, using images in Figure 4 (a)-(e) (left). The im- 
ages on the right show the calculated saliency. The 
intensity of the images represents the saliency. The pixel 
values were normalized so as the maximum value to be 
constant. 

In experiment (a), a thousand scenery images were used 
as learning images, and in experiments (b) through (e), 
images in which 26 capital letters in the English alphabet 
and 10 Arabic numerals were arranged randomly were used 
as learning images. The size of the letters and numerals in 
the learning images was the same as the size of those in the 
images used in the search process. 

In (a), the calculated saliency was large in the area 



where the orientation of one line segment was different psychological phenomenon of "popping out". This result 
fiom that of the other line segments, which confirmed the can be explained as follows: line segments oriented 135 

degrees yield a small residual error in expanding the fea- 

\ \ \ \  ture by the basis in search time, because there are so many 
135-deg segments in the search period that the basis has 

\ \ \  \ 
enough information to represent 135-deg segments. In con- 
trast, line segments oriented 45 degrees yield a larger 

\ ' / \  residual error. 

\ \ \ \  In (b), the saliency was large in the area with a "re- 
versed N". which confirms the osvcholo~ical results 
showing that the search time required. t i  find unfamiliar 
target among familiar distractors is short. This is because 
"reversed N;'s appear only in the search period and do not 
appear in the learning period. In contrast, in (c), which 
shows the reverse pattern of (b), the saliency was not large 
in the area where the target was, which confirms the psy- 
chological results showing that the search time required to 
find a familiar target among unfamiliar distractors is long. 
The reason why the area with the target did not have large 
saliency in spite of the fact that the target differed fiom the 
other stimuli is that since there were no "reversed W s  in 
the learning patterns, the memorized basis did not have 
enough information to represent a "reversed N". 

In (d), the saliency was large in the area around "upright 
2", the target that differed from the other stimuli, while in 
(e), which was a rotated pattern of (d), the saliency in the 
area around "rotated 2" was not large. This is because the 
memorized basis did not have enough information to rep- 
resent "rotated 2"s and "rotated 5"s since they did not 
appear in the learning images. 

4 Experiment yielding asymmetry 

The search time for the unfamiliar target "rotated 2" 
among unfamiliar "rotated 5"s was quite long, as shown in 
(e) in the last chapter. Similarlv. the search time for a "ro- 
tated 5" among +otated 2"s was long. But what will the 
result be like, if, for example, "rotated 2"s are presented to 
the subjects in the training? To investigate the problem, we 
conducted the following psychological experiment, using 
two subjects (TT, MG). 

The tasks for the subjects included a learning task, in 
which either "rotated 2"s or "rotated 5"s were presented to 
the subjects, and a test task, in which the subjects searched 
for a "rotated 2" or a "rotated 5" among "rotated 5"s and 
"rotated 2"s, respectively. Three sessions for the test task 
were conducted: one session before the six-month training 
period, one in the middle of the training period, and one - after the training period. In the sessions, the subjects had to 
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perform another task for comparison, which was to search 
for an "upright 2" or an "upright 5" among "upright 5"s 
and "upright 2"s, respectively. 

In the learning period, subject TT searched for a target 
among three kinds of stimuli, namely, "rotated 2"s, "up- 
right 2"s, and "upright 5"s, on a background of stimuli of 
the other two kinds. An example of this arrangement is 
shown in Figure 5. Subject MG searched for a target 
among three kinds of stimuli, namely "rotated 5"s, "upright 
2"s. and "upright 53 ,  on a background of stimuli of the 
other two kinds. The training sessions were conducted for 
about 10 minutes a day, during approximately six months. 

The changes in the mean reaction time in the three test 
sessions are shown in Figure 6. The filled circles represent 
the time it took the subjects to find the target in tar- 
get-present trials, and the open squares represent the time it 
took the subjects to push a button to indicate that the target 
was absent in target-absent trials. 

When both the target and the distractors were familiar, 
the reaction time was short. In contrast, when the target 
was familiar but the distractors were not, the reaction time 
decreased in proportion to the degree to which the sub- 
jects were familiar with the stimuli. 

5 Conclusions 
We described a model for calculating the saliency map 

of an input image, which can explain the asymmetrical 
effect in visual search affected by memory. The model 
embodies the memory effect by using a principal basis ob- 
tained from K-L expansion of learning images as features 
during the search. We found that the asymmetry in visual 
search appeared again after six months of perceptual learn- 
ing. Modeling the contextual effect, such as that of the 
situation in which the search process takes place or a task 
is performed, is the topic of our future work. 
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