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Abstract 

In this paper, we propose a new method for estimat- 
ing reflection properties of a real object surface from a 
single specular component image, as well as the light 
source position. Polarization is used for separating the 
diffuse and specular reflection components. Different 
from previous approaches, which heavily assumed both 
distant viewpoint and illuminant position, our method 
can work even under short distance of them. Given 
a specular reflection component, the method begins 
with estimating the position of the light source. At 
the same time, the initial values of reflectance param- 
eters are also estimated by linearizing the reflection 
model with a variable transformation. The estimated 
illuminant position and reflection parameters are then 
refined based on the original reflection model. 

1 Introduction 

Estimating the illumination of a real scene from a 
single image is an important issue in computer vision 
and augmented reality research. For example, aug- 
mented reality allows us to see the real world scene 
seamlessly with virtual objects superimposed on it. To 
generate a highly photo-realistic augmented image, the 
virtual object has to be shaded consistently under the 
real illumination condition of the other objects in the 
scene. Moreover, the realistic reflectance properties 
also have to be used for synthesizing the virtual ob- 
ject images with realistic shading effects. Therefore, 
it is desirable to solve the following two problems si- 
multaneously: (1) estimating the illumination of a real 
scene from a single image; and (2) measuring the sur- 
face reflectance properties of a real object in the scene 
from a single image. 

In the past, several techniques to estimate re- 
flectance properties from a single image with known 
illumination have been developed. Those techniques 
first assume uniform reflectance properties over the ob- 
ject surface, and then generate a new synthetic image 
by using an iterative method that minimizes the error 
between the real and synthetic image with respect to 
the reflectance parameters [I, 21. On the other hand, 
a few methods have been developed for estimating the 
illumination of a real scene from a single image by us- 
ing the surface reflectance properties. I. Sato et al. [3] 
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Figure 1: Illuminant and viewpoint assumptions. 

proposed a method for estimating the complex illumi- 
nation distribution of a real scene by using a radiance 
distribution inside shadows cast by a real object. 

However, few methods have been proposed for es- 
timating reflection parameters of a real object surface 
from a single image, as well as the illuminant position. 
Ikeuchi et-al. [3] developed an algorithm to determine 
both the surface reflectance properties and the light 
source direction from a single image based on analysis 
of a simplified Torrance-Sparrow reflection model [12]. 
Rarnammorthi et al. [5] derived an equation in terms of 
spherical harmonic coefficients of the reflectance prop 
erties and illumination condition. Then, they decon- 
volved it for simultaneously recovering the illumination 
distribution and surface reflection ~ro~er t i e s .  Tomi- 
naga et al. [6] adopted the Phong *ode1 to determine 
the surface reflectance properties and the direction of 
illumination from a single color image. However, the 
above techniques heavily assumed both distant illumi- 
nation and viewpoint (see Fig l(a)) and can not handle 
adequately real scenes under short distance of them. 
Our method aims at estimating reflection properties of 
a real object surface from a single image, as well as  
the light source position even under short distance of 
illumination and viewpoint (see Figure 1 (b)). 

We propose a two-stage iterative technique that 
minimizes the difference between the synthesized im- 
age and the real one, based on the variation of angle 
data due to perspective projection and nearby illumi- 
nation. We use polarization for separating the diffuse 
and specular reflection components. Given a specular 
reflection component, the method begins with estimat- 
ing the position of the light source. At the same time, 
the initial values of reflectance parameters are also es- 
timated by linearizing the Torrance-Sparrow reflection 
model with a variable transformation. The estimated 
illuminant position and reflectance parameters are then 
refined based on the original reflection model. Some re- 
sults of experiments using synthetic and real data are 
presented in the paper. 



2 Polarization-Based Separation of Re- 
flect ion Components 

2.1 Reflection Mechanism 

In general, reflection models are described by linear 
combinations of two reflection components: the dif- 
fuse reflection and the specular reflection. This phys- 
ical model was formally introduced by Shafer [7] as 
the dichromatic reflection model. The diffuse reflec- 
tion component represents the reflected rays arising 
from internal scattering inside surface medium. The 
light waves penetrate the surface, internally multiply 
refract, and then refract back out into air with a vari- 
ety of directions. 

The specular reflection component, on the other 
hand, represents the light rays reflected on the object 
surface. The surface may be assumed to be composed 
of microscopic planar elements, each of which has its 
own surface orientation different from the microscopic 
local orientation of the surface. The result is the specu- 
lar reflection component that spreads around the spec- 
ular direction and that depends on the surface rough- 
ness for the width of the distribution [8]. 

2.2 Polarization 

In our appearance analysis, polarization is used 
for separating the diffuse and specular reflection com- 
ponents. Wolff et al. 181 have proposed an algo- 
rithm which analyzes linear polarization states of high- 
lights removal and material classification. Boult et al. 
[9] have also studied the classification of scene edges 
based on their polarization characteristics. Recently, 
Miyazaki et al. [lo] have proposed a method for ob- 
taining surface orientations of transparent objects by 
analyzing the degree of polarization in visible and far- 
infrared wavelengths. 

The separation method adopted in this paper uses 
two linear polarization filters [ll]. One is placed in 
front of a point light source in order to polarize the 
light source linearly, and the other is placed in front of 
a camera to capture images through the linear polar- 
ization filter. For an ideal filter, a light wave should be 
passed unattenuated when its electric field is aligned 
with the polarization axis of the filter, and the energy 
is attenuated as a trigonometric function when the fil- 
ter is rotated. 

As described in the previous subsection, the image 
brightness value taken by sensor is described as 

where Id and I, represent the diffuse and specular com- 
ponents, respectively. 

When incident light is linearly polarized, the diffuse 
component tends to be unpolarized due to its internal 
scattering. In contrast, the specular reflection com- 
ponent tends to remain linearly polarized. Therefore, 
the observed brightness of the specular component can 
be expressed as a trigonometric function for polariza- 
tion filter angle, and that of the diffuse component can 
be expressed as a constant. Thus, the image bright- 
ness observed through a linear polarization filter is de- 
scribed as 

I = I, + I,(1 + cos 2(0 - p)) (2) 

where 0 is the angle of the polarization filter and p is 
the phase angle determined by the projection of the 
surface normal onto the plane of the filter. 

It should be noted that in the above equation I, 
is not equal to the real diffuse intensity, and 2 x I, 
is not equal to the real specular intensity. Both of 
specular and diffuse components are attenuated travel- 
ing through the polarization filter and image brightness 
gets darker overall the object surface. 

The polarization state of reflected light depends on 
several factors including the material of the reflecting 
surface element, and the type of reflection component, 
i.e. diffuse or specular. In order to describe the state 
of polarization of the reflected light, the Fresnel re- 
flection coefficients F*(q, $) and Fil(q, @) are used [8]. 
The Fresnel reflection coefficients determine the polar- 
ization of reflected light waves in the directions perpen- 
dicular and parallel to the plane of incidence, respec- 
tively, and determine the maximum and the minimum 
intensities which are observed when the angle of the po- 
larization filter varies. The parameter q is the complex 
index of refraction of the surface medium and the pa- 
rameter q is the incident angle. Since we use a linearly 
polarized light source, we can assume that the inten- 
sity of the specular component observed through a lin- 
ear polarization filter is guaranteed to become equal to 
zero at a certain angle. Hence, we obtain the following 
relation between I, and specular reflection intensity: 

where I, is the specular reflection intensity. 
It is known that the diffuse component is also po- 

larized when the viewing angle is close to 90 degrees, 
e.g., near the occluding contour of an object. How- 
ever, the diffuse component becomes linearly polarized 
only in narrow region and the degree of polarization in 
the diffuse reflection component is generally negligible. 
Hence, we assume that the diffuse component is un- 
polarized in our analysis. The intensity of unpolarized 
light is attenuated by half when it passes a linear polar- 
ization filter. As a result, I,  and the diffuse component 
have a relation as 

where Id is the diffuse reflection intensity. 

2.3 Separation of Reflection Components 

For separating the diffuse and specular reflection 
components, images of a target object are taken ev- 
ery certain degrees filter rotation. Then, the maximum 
intensity I,,, and the minimum intensity Imin are de- 
termined for every image pixel. If I,,,,, - I,,, for a cer- 
tain pixel is less than a threshold, we consider the pixel 
to contain only the diffuse component. If I,,, - Imin 
is larger than a threshold value, we determine the pixel 
contains the specular component and the specular com- 
ponent intensity is obtained from I,,, - Imin. Imin is 
used for determining the diffuse component intensity. 



3 Illuminant Position and Reflectance 3.3 Initial Estimation 
Parameter Estimation 

The analysis approach described in the last section 
After separating the r~flection components, we es- is too sensitive to noise. In the following description, 

timate the position of the single point light source, as from a practical viewpoint, we explain how to deter- 
well as the s~ecular reflection parameters, using only mine the illuminant position L = (xl, yl, zl)T from the 
the specular reflection component. single specular image. 

The following equation can be derived by the loga- 
3.1 Reflection Model rithm transformation of equation (6): 

In our system, we use the Torrance-Sparrow reflec- a2 
tion model [12] simplified by assuming that the Fresnel In E,,, = In K,,, - - - In cos 8,. (10) 
reflectance coefficient is constant and the geometric at- 2a2 

tenuation factor is 1. With this reflection model, the ~ h - ,  we obtain the linearized reflection model as 
specular reflection at a surface point is given as 

I, m E,,, = - -- K"." a2 
exp -- 

L, cos e, [ 2021 (6) 
where m stands for each R, G and B component, I,,, 
is the specular component intensity, 8, is the angle be- 
tween the viewing direction and the surface normal, a 
is the angle between the surface normal and the bi- 
sector of the viewing direction and the light source di- 
rection, K,,, is a constant for the specular reflection 
component, and a is the surface roughness measured 
as the standard deviation of microfacet slope. L, is 
the irradiance given by 

L - L,,, 
m - -  

r 2  (7) 
where L,,, is the luminous power and r is the distance 
between the point light source and the surface point. 

In the original Torrance-Sparrow reflection model, 
the coefficient K,,, contains the F'resnel reflectance co- 
efficient and the geometric attenuation factor. In or- 
der to handle this K,,, as a constant, we assume that 
the viewing angle 8, and the illuminating angle ei are 
less than 60' [13]. Moreover, note the angle 8, can be 
computed at each image pixel by range scanning and 
camera calibration, and the angle a can be expressed 
as a function of the illuminant position L as a = a(L) 
and thus its value is now unknown. 

In this paper, we refer to (Ks = [K,,R, K,,G, K 8 , ~ I T  
and a )  as the specular reflection parameters. 

3.2 Illuminant Distance 

We can compute the illuminant direction at  the ob- 
ject surface point P satisfying = 8,, i.e., a = 0 as 

L, = N, + (N,, V,)N, - V, (8) 
where L, is the unit vector to represent the illuminant 
direction. N ,  and Vp are the unit vectors to represent 
the surface normal and viewing direction, respectively. 
Using L,, we can express the illuminant position L as 

where P is the location vector of P and t is the distance 
between P and L. 

The surface point P corresponds to the peak pixel 
location (x,, y,). Once we get (x,, y,), P can be cal- 
culated using the camera projection matrix, and hence 
L, can be also computed from equation (8). As a re- 
sult, only t is unknown and needs to be determined for 
estimating illuminant position. From now on, we re- 
fer to t as the illuminant distance. On the other hand, 
for estimating the specular reflection parameters, Ks,R, 
KstG9 K s , ~ ,  and u have to be determined. 

where 

Y, = In E,,, + In cos 8,. (13) 

Our basic idea is to find L that generates 2D points 
in the parameter space (X, Y,), {(Xj, Ymj)), which a 
line best fits. To define the objective function for this 
optimization, we use a statistical evaluation called the 
correlation coefficient as follows. 

The correlation coefficient measures linear relation- 
ship between two variables. Given N 2D points 
{(xi, yi) ) (i = 1,2, . , N), the correlation coefficient 
r,, is defined by 

where C stands for the sum from i = 1 to i = N, and 
N 

E and J are the mean values satisfying xz, = NZ 

and xyi = NJ, respectively. The value of r,, can 
i=l 

range from -1 to +l. If there is no linear relationship 
between x and y, r,, is 0. If there is a perfect posi- 
tive (negative) relationship, r,, is +1 (-1). Therefore, 
since the slope of equation (11) is always negative, we 
define the objective function to be minimized with re- 
gard to L as 

where rxy, is the correlation coefficient between the 
variables X and Y, in equation (12) and (13) for m = 
R, G, B. 

Since the minimization of E, is difficult to carry out 
analytically, we get the solution by searching a discrete 
parameter space. We search the illuminant distance t 
which minimizes E,(t) by discretizing t with steplength 
At = lmm, within 0 < t 5 t,,,, where t,,, is the 
user-defined upper bound oft.  From the resultant P, 
the optimal position L* can be calculated. 

Once we obtain L*, from equation (12) and (13), 
we can plot 2D points {(Xj, Ymj)). After that, by 
first fitting a line to these 2D points via a least-squares 
method and then comparing the regression line with 



equation ( l l ) ,  the estimates of the specular reflection 
parameters, (K,' , a*), can be given as 

where a, < 0 and bm are, respectively, the slope and 
Y-intercept of the least-squares regression line for the 
2D points {(Xj, Ymj)} for m = R, G, B. However, 
though the surface roughness is independent of three 
color channels, the above a;, a;, and a> often have 
the different values due to noise. Thus, we finally de- 
fine the estimate of the roughness, a*,  by the mean of 
a;, a;, and a > .  

3.4 Refinement 

Since the specular reflection parameter estimation in 
the last section is based on the logarithm fitting, the 
image synthesized based on the estimates (K,' , a* ,  t*) 
is still too different from the observed image. In this 
section, we refine (K,', a* ,  t*) by solving a nonlinear 
optimization problem based on the original reflection 
model given in equation (6). 

Now, suppose we have Nk surface points of the tar- 
get object in the image, the error between the input 
specular image and the model-based rendering image 
is evaluated by 

e r g  ( 8  9 0, t = C c (E:~) - 
Ks,m 

mE{R,G,B) k=1 COS (8:") 

[ (a(:)$))2]) (18) x exp - 

where Eik) and (8sk), d k ) )  are, respectively, the ratio 
E and the angles (&,a )  measured at  the kth surface 
point in the input specular image. Minimizing equa- 
tion (18) locally around the initial guesses (K,' , a*, t*) 
via the Alternating Minimization (AM) algorithm [14], 
we can obtain the final estimation of the reflection pa- 
rameters, (K,'*, a**, t"). The procedure is described 
in the following. 

1. Set n=O, KiO) = K* 3 9 = a* ,  and t(0) = t* 

2. Update Kin) for fixed a(") and t(")as 

3. Set n' = 0 and a(0) = a(") 

4. Update a("') for fixed Kin+') and t(") as 

tine ~ n g  1 diagram I 

Figure 2: Basic steps of the proposed method. 

5. If - a("')[ > €1, set n' + n' + 1 and go to 
4. Otherwise set dn+l) = a("'+') 

6. Update t(") for fixed K;"+') and a("+') as 

where T(") = {t(") - At, t("), t(") + At} 

("+'I - K,(%( > €2 or - dn)l > 63 or 6.  If (Ks,m 
It("+') - > €4, set n + n. t  1 and go to 2. 

In the above procedure, n and n' are time steps, 
€1 N €4 are thresholds, 7 is a posit,ive number for the 
steepest descent method, and At is a positive number. 
We show the outline of the overall algorithm in Fig.2. 

4 Experiments 

In this section, we present results of two experiments 
using synthesized and real images. The first experi- 
ment using synthesized images is made mainly to show 
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Figure 3: Synthesized image: (a)input image, 
(b)synthesized image. 

the capacity of our method in estimating illuminant 
positions accurately. The second experiment using real 
images aims to examine the applicability of our method 
to real problems. 

4.1 Experiment Using Synthesized Image 

Fig.3(a) shows the original synthetic specular im- 
age generated using a well-known rendering software 
called RADIANCE [15]. The object to be modeled in 
this experiment is a large board in the center of the 
image. RADIANCE employs an empirical reflection 
model proposed by Ward [16] as follows. 

p, exp[- tan2 a / ~ ' ~ ]  
E, = 

Jcos Oi cos 8, 4ruI2 (19) 

where Oi, O,, and cr are all the same as those of 
Torrance-Sparrow reflection model, p, is the specular 
reflectance, d is the surface roughness. Since Ward's 
model parameters (ps, a') can not be simply compared 
with Torrance-Sparrow model parameters (K,, a) ,  we 
examine only the illuminant position estimation of 
our method. After the first-stage initial estimation, 
we obtain L* = [11.81,2.16,3.051] to the true value 
Lt,,, = (13,2,3). After the final-stage refinement, 
we obtain a** = 0.057 and K,"* = [0.84,0.85,0.84] T. 
Fig.3(b) illustrates the image rendered by using L*, 
a**, and K:*. 

4.2 Image Acquisition System 

In this section, we explain the experimental setup 
used in the second experiment (Fig.4), which is de- 
scribed in the next section. A range image is obtained 
using a light-stripe range finder with a liquid crystal 
shutter and a color CCD video camera. Each range 
image pixel represents an 3-D location of a correspond- 
ing point on an object surface. The same color camera 
is used for acquiring range images and color images. 
Color images are taken through a polarization filter. 

A halogen lamp is used as a light source. The lamp 
is small enough for us to assume the lamp is a point 
light source. In order to illuminate the object with 
linearly polarized illuminant, a linear polarization filter 
is placed in front of the lamp. 

4.3 Experiment Using Real Image 

Fig.5(a) shows the original real image. The object 
to be modeled is a blue bookend in this scene. Fig.S(b) 

\ / linear polarizer 

Figure 4: Experimental setup. 

and (c) show the diffuse and specular reflection com- 
ponents separated by using polarization filters, respec- 
tively. The image shown in Fig.5(c) is used as input to 
our estimation method. 

After the first-stage initial estimation, we get L* = 
(-9.89,6.95,15.62)~. Finally, we obtain a** = 0.079 
and K:* = [0.29,0.40,0.34] T. Fig.G(a) illustrates the 
specular synthetic image recovered by using L*, o**, 
and K,". Fig.G(b) shows the final synthetic image 
generated by composing the synthetic specular image 
(Fig.G(a)) and the real diffuse image (Fig.5(b)). 

Finally, we demonstrate the results of running our 
algorithm on a curved surface object. Fig.7(a) shows 
the original real image. Fig.7(b) and Fig.7(b) show, 
respectively, the diffuse and specular components s e p  
arated by using polarization. Fig.7(d) shows the result 
of adding the synthesized specular image to the diffuse 
component shown in Fig.7(b). 

5 Conclusion 

In this paper, we have proposed a new method 
that estimates the reflectance properties of the object 
surface as well as the illuminant position even under 
nearby viewpoint and illumination. The input data 
are a 3D geometric model of the target object and a 
single specular component image separated using po- 
larization filter. By using a two-stage iterative algo- 
rithm, the specular parameters of Torrance-Sparrow 
reflection model and 3D position of the single point 
light source are determined simultaneously. We have 
shown that the method can be successfully used for 
producing photo-realistic synthetic object images un- 
der unknown illurninanant positions. 
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