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Abstract 

Adaptive background techniques are useful for a 
wide spectrum of applications, ranging from security 
surveillance, traffic monitoring to  medical and space 
imaging. With a properly estimated background, mov- 
ing or new objects can be easily detected and tracked. 
Existing techniques are not suitable for real-world im- 
plementation, either because they are slow or because 
they do not perform well in the presence of frequent 
outliers or camera motion. We address the issue by 
computing a learning rate for each pixel, a function of 
a local confidence value that estimates whether a pixel 
is (or not) an outlier, and a global correlation value 
that detects camera motion. After discussing the role 
of each parameter, we report our experimental results, 
showing that our technique is fast but efficient, even in 
a real-world situation. 

mean value and standard deviation of Gaussian dis- 
tributions - see [6, 7, 81 for a few examples. In all 
those techniques, a fixed adaptation rate is considered. 
Namely, for a pixel (or a disparity) value xi, the value 
pi(t) of the i-th pixel of the estimated background will 
be given by pi(t) = axi ( t )  + (1 - a )p i ( t  - 1). 

In this paper, we suggest that the learning rate cr 
should vary according to a confidence value a t  each 
pixel, in such a way that temporally present outliers 
be ignored, persistent outlier gradually become part of 
the background and significant background motion be 
rapidly learned. Such approach would yield increased 
flexibility in real-world applications. In traffic surveil- 
lance for example, a camera could be switched between 
different perspectives and rapidly adapt to the new 
background. Similarly, increased performance would 
be obtained in segmenting video streams or videocon- 
ferencing data with rapidly changing contexts. 

1 Introduction 2 Method 

The interest of separating dynamic objects, such as 
people, from a static background has been extensively 
discussed in the computer vision literature. Applica- 
tions range from vehicle guidance [I], object tracking 
for security surveillance and traffic monitoring [2], envi- 
ronment description, image restoration [3], interactive 
games [4], to medical and space imaging and signal pro- 
cessing such as background estimation in experimen- 
tal spectra [5]. Provided the background is static or 
slowly varying, segmentation algorithms can be divided 
in two types: interactive and automatic. Interactive 
techniques involve human interaction at least during 
the first frame. While they are flexible and accurate, 
they are not suitable for real-time and real-world appli- 
cations for obvious reasons 161. Automatic techniaues 

L ,  

are not straightforward because they cannot rely on a 
single source of information. Motion, for example, can 
be used to distinguish between background and fore- 
ground. However, in some applications such as video- 
conferencing and surveillance applications, objects may 
remain static for extended periods of time (e.g. a car 
stopped in a traffic jam). Color-based techniques are 
not very robust in applications where foreground and 
background share similar colors or when the environ- 
ment is affected by changes in lighting conditions and 
noise in the camera. Thus, a combination of features 
is desirable [4]. 

To improve the quality of the background model, 
many techniques have been proposed that rely on the 
construction of a statistical background model, using 
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2.1 Confidences and correlations 

The learning rate must take into account: 

The confidence value of a pixel with respect to its 
error with the estimated background (error above 
a statistical threshold); 

The overall correlation between a newly acquired 
frame and the estimated background. A trivial 
version would consist in computing the percent- 
age of pixels whose error with the estimated back- 
ground is above threshold. 

The former has already been explored by one of 
the authors (T.K.) in previous work [9]. A pixel- 
wise difference cq(t) is computed between input image 
and background model as a quadratic error: cq(t) = 
(xi(t) - pi(t))2 where xi(t) is the value of pixel i at 
time t and pi(t) is the value of the estimated back- 
ground pixel i a t  time t. A confidence value Pi(t) is 
constructed with: 

where o(t)  is a robust estimation [lo] of the standard 
deviation of the errors ci(t): 

where dL(t) denotes the median of all cq(t). The me- 
dian is computed via an histogram of the errors. The 



use of the median instead of the average proves valuable 
when only an object of small size is moved in the back- 
ground. Note that, since we use a RGB color model of 
the background (as in [ll] for example), all equations 
must be applied component-wise. 

With respect to the determination of the correlation 
p(t) however, we elected to work on the hue (H) com- 
ponent of the HSB model of both frames and estimated 
background so as to neglect the effects of illumination 
(variable brightness). p(t) is then given by: 

where 

Note that because wi(t) doesn't have any unit, its ap- 
plication to HSB components is reasonable. However, 
because the difference between hue components in the 
computation of p can lead to discontinuities (large dif- 
ference between a hue component of 330 and lo), the 
following operator is used: 

hi - h2 f min(hn - hl ,  hl - h2 + 360) with hl < h2 

2.2 Determination of the learning rate 

For surveillance-type applications, for example, a 
robust background estimation must be obtained so 
that a robust segmentation of the moving objects can 
be achieved by subtracting the estimated background 
from the acquired image. Thus, pixels with low con- 
fidence value, e.g. because of temporal occlusion due 
to a moving person, should not necessarily be rapidly 
learned as being part of the background. Conversely, 
when the correlation is very low, e.g. rotation of the 
camera, learning must be rapid. Consequently, the 
learning rate a ( t )  must be some appropriate product 
of the two factors B and p. We define two functions f, 
and f4 to weight the relative importance of the above 
factors in the evaluation of a ( t ) .  

For rapid adaptation to large changes of background 
(camera rotation for example), it is desirable that func- 
tion f, peaks when the correlation is low (with a 
threshold to be determined). In our experiments, f, 
is given by: 

where pt is the threshold separating large changes of 
background from local changes. The value of k, deter- 
mines the sensitivity of the function f, to the threshold 
pt. In our experiments, it was found that a very high 
value of k, (from 500 to 1000) was reasonable for a 
threshold value pt of 0.80. However, it was also found 
that depending on the speed or amplitude of the rota- 
tion, the minima in correlation pt were spanned over 
too short a period of time, so that complete adaptation 

Figure 1: Illustration of the delay in the evaluation of 
the correlation: The threshold can be lower while the 
time of higher learning rate is extended. 

was not possible. Consequently, a delay is introduced 
so that a high learning rate is maintained till the back- 
ground is accurately learned. It is done by introducing 
a delay b(t) and coupling it to a delayed correlation 
pd(t) defined as follows: 

where q and p are accumulation (respectively decay) 
constants and p(t) is the running average of the cor- 
relation p(t). The appropriate choice of the constants 
q and p enables a decrease of the threshold pt (thus, 
improving the robustness of the system) and allows for 
complete adaptation following a camera rotation (see 
Figure 1). Naturally, pd(t) replaces p(t) in Equation 1. 

The local learning component of the learning rate 
is adjusted via function fB so that the learning rate is 
higher when the confidence (that the pixel belongs to 
the background) is high. In the current state of our 
experiments, fa is simply the identify function: 

A determination of a ( t )  as a simple product of 
acfo(Pi(t))fp(p(t)) is not satisfactory as it gives an 
equal weight to local changes and large scale motions. 
Instead, a strong weight to the correlation factor is de- 
sirable. It is obtained by using the following update 
law: 

where a b r  is a learning base rate and a, an weight 
factor determined so that the maximum learning rate 
of 1 is achieved when correlation p(t) is minimal and 
Pi(t) is maximal. In our experiments, the value of a b r  

(respectively a,) was set to 0 (respectively 0.5). 

3 Experimental results 

We have tested the algorithm on various streams of 
images acquired by a camera monitoring automobile 
traffic on a major avenue. Such setup provides for an 
interesting case-study as (a) outliers (each passing car, 
motorbike or pedestrians) are numerous and moving 
at different speeds and (b) lighting conditions can vary 
quite significantly over extended periods of time. Fig- 
ure 2 is a snapshot of the system while processing a 



Figure 2: Snapshot of the system: (left) original frame, (right) estimated background. 

frame. All computations are made on a single high- 
performance PC, in real-time. Provided that no initial 
outlier remains immobile over most of the experiment, 
the quality of the result obtained in this snapshot is 
independent of the initial conditions. 

Figure 3 illustrates the effectiveness of our method 
to  discriminate between outlier (low local confidence) 
and camera movement (low global correlation). The 
left-hand side column describes the behavior of the 
system in two cases: (a) pixel values vary either be- 
cause of noise or because of the presence of outliers 
(e.g. 0 < t < 1000); (b) an outlier appears and remains 
to the end of the experiment (t > 1000). In both cases, 
the learning rate remains almost unchanged, dampened 
by a very high correlation p. Thus, background adap- 
tation subsequent to the introduction of a persistent 
outlier is very slow and (with this setting) is not com- 
pleted before a t  least 500 frames. The right-hand side 
column describes the behavior of the system when the 
camera is panned (at time t = 2020). In this case, the 
correlation p decreases, which results in f, increasing 
sharply, and remaining high over an extended period 
of time because of the accumulation of pd. With the 
increase off,, cr reaches a very high value and the back- 
ground is re-learned in about 15 frames (at a frame rate 
of 30 fps). A side-effect of the accumulated pd is that 
noise in subsequent estimations of the correlation is en- 
hanced, which results in a learning rate remaining high 
for all pixels, even if locally the estimated background 
is correctly learned. Such problem can be solved with a 
proper selection of parameters k, and pt.  Experiments 
carried out using various configurations of parameters 
show the system to be robust with a straightforward 
increaseldecrease of the ratio between speed of learn- 
ing of outlier and speed of adaptation to changes of 
context. 

4 Conclusion 

We reported a novel method for adaptive back- 
ground estimation. Its originality resides in its simul- 
taneous consideration of local confidence and overall 
correlation. Pixels with a low local confidence will be 
considered as outliers and as a result of which will see 
only a very low learning rate. Conversely, when the 
overall correlation is low, the system quickly adapts 
to compensate for either camera movements or rapid 
changes of context. The method was shown to be ef- 
fective and robust in a real-world experimental setup. 
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Figure 3: Discrimination of outlier (left column) versus panning camera (right column). From top to down, each 
frame denotes the time series of (a) a pixel value and the corresponding background pixel value, (b) the correlation 
p and f, between consecutive frames, (c) the local error and the median of the error, (d) the confidence value /3 
and (e) the computed learning rate a. 
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