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Abstract 

An illumination irnagc, which is a part of intrin- 
sic images, represents the effect of a lighting condition 
of thc sccnc. To propcrly handlc illumination cffccts 
such as cast-shadows in the input image, image ma- 
nipulation using thc illumination imagc is only natu- 
ral, since it describes variation of lighting effects from 
a rcflcctancc imagc which can bc considered as an im- 
age under the standard illumination. We have shown 
in prcvious work (121 that illumination cffccts arc rca- 
sonably factored out from the input images by using 
illumination imagcs. To apply this mcthod as a prcpro- 
cessing stage to a video surveillance system, realtime 
cstimation of illumination imagcs is rcquircd. Unfor- 
tunately, the cost of estimation of illumination images 
in rcaltimc is computationally high. In addition, it 
is necessary to synthesize background images before 
deriving illumination irnagcs whcn thc sccnc contains 
dynamic objects. In this paper, we illustrate our ap- 
proach to modcling illumination irnagcs with principal 
component analysis (PCA) to directly estimate illumi- 
nation imagcs from input imagcs which contain moving 
objects in the scene. We propose this framework pre- 
supposing that thc camcra is fixcd and thc sccnc is 
observed under several lighting conditions. 

1 Intrinsic Images 

The idea of intrinsic images was first proposed by 
Barrow and Tcncnbaum [2]: thc input imagc I intrin- 
sically is composed of the reflectance image R and the 
illumination imagc L, i.c. I = R L. Sincc thc equation 
is ill-posed, decomposition into the intrinsic images is 
known to bc difficult. 

Recently, Weiss [4] proposed an approach to use the 
scrics of input imagcs to dcrivc a single rcflcctancc im- 
age and the series of illumination images. Since the 
mcthod rclics on thc statistics of thc natural imagcs, 
it robustly decouple the reflectance image and the illu- 
mination imagcs from thc input imagc scqucncc. How- 
ever, since the method does not consider the camera 
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gain paramctcr, it cannot directly bc uscd with thc 
ordinary inexpensive cameras. 

Wc cnhancc Wciss's mcthod to dcrivc intrinsic im- 
ages to explicitly take the camera gain into account. 
We formulate thc intrinsic imagc modcl as 

where I, G, R and L correspond to input images, cam- 
era gains, a rcflcctancc irnagc and illumination imagcs. 
In log domain, we denote I, G, R and L in a lower case 
i, g, r and 1, rcspcctivcly. Wc bcgin with Equation (2). 

With n spatial derivative filters fn, we compute a fil- 
tcred rcflcctancc imagc rn by applying Wciss's ML cs- 
timation method, which takes a temporal median of 
filtered input imagc, 

in = medianti fn * i(x, y, t ) )  (3) 

then c o m ~ u t e  each filtered illumi~lation imaee 1, in - , ., 

dcrivativc domain whcrc this cstimation was donc by 
1 = i - r in Weiss's work. 

Finally camera gains g are computed by taking spatial 
mcdian of obtained gain imagcs. 

This camera gain g actually is a spatial constant which 
is crased whcn dcrivativc filters arc applied to input 
images and our method correctly handles the spatially 
indcpendcnt factor g. 

2 Creating Illumination Eigenspace 

Our objective is the modeling of illumination images 
for rcaltimc cstimation of illumination imagcs. Our 
method first create a lot of the illunlination images us- 
ing prcviously mcntioncd mcthod, and storc thcm for 



the realtime estimation. At the first estimation step, to 
dccomposc thc scrics of input imagcs into thc intrinsic 
images, it is necessary to remove moving objects from 
thc input imagcs. Thcrcforc wc first crcatc background 
images in each short time range in the input image se- 
qucncc, assuming that thc illumination condition docs 
not vary in that short time period. We employed the 
simplc avcraging of thc imagcs for thc background csti- 
mation, while more rich method would give the better 
cstimatcs. Thcsc background imagcs, B(x, y, t), arc 
used as the input image sequence for estimating intrin- 
sic imagcs. 

To storc thc cstimatcd illumination irnagcs, wc pro- 
pose an illumination eigenspace to model variation 
of illumination irnagcs of thc sccnc. Thc illumina- 
tion eigenspace is an eigenspace into which only il- 
lumination cffccts arc transformcd. As a prcliminary 
framework, we use PCA to  construct an illumination 
cigcnspacc of a targct sccnc, in our casc, thc cross- 
road shown in Figure 5. PCA is widely used in sig- 
nal proccssing, statistics, and ncural computing. This 
process is also called the Karhunen-LoCve transform. 
Thc basic idca in PCA is to  find thc basic compo- 
nents [sl, s*, ... , s,] that explain the maximum amount 
of variance possiblc by n lincarly transformcd compo- 
nents. Figure 2 shows the hyper-plane constructed by 
mapping illumination imagcs onto thc cigcnspacc using 
all eigenvectors. 

In our casc, wc mappcd G(t) .  L(x, y, t )  to  thc illumi- 
nation eigenspace, instead of mapping L(x, y, t )  only. 
Bccausc whcn givcn an input irnagc, thc rcflcctancc 
image R(x, y) is useful to  eliminate the scene texture 
by computing I ( x ,  y,t)/R(x, y), and thc resulting im- 
age becomes G(t) .  L(x, y, t ) .  Let us denote the prod- 
uct of thc camcra gain and thc illumination imagc, 
L1(x, y, t) = G(t) . L(x, y, t ) .  We keep the mapping 
from L1(x, y, t )  to both G(t)  and L(x, y, t) for dcriv- 
ing each components. Figure 1 shows the process of 
crcating thc illumination cigcnspacc. 

Figure 1: Set up flow of the illumination eigenspace. 
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Thc uppcr sidc imagc shows thc rcsult of mapping 
all the product of the illumination image and the cam- 
era gain, L1(x, y , t ) ,  from 120 days(7:OO-15:OO) whilc 
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Figurc 2: Plottcd illumination imagcs in thc illumina- 
tion eigenspace (used the first 3 eigenvectors for dis- 
play). Uppcr: with 120 days data(7:OO-15:00), Lowcr : 
with 10 days data(10:OO-14:OO) 
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thc lowcr sidc imagc illustratcs thc rcsult of using only 
10 days(10:OO-14:OO) of L1(x, y, t). In thc lowcr sidc 
figure, while the three axes represent the first three 
eigenvectors, the graph is transformed so that the vari- 
ation along different days is aligned to the vertical axis, 
which is thc first cigcnvcctor (thc cigcnvcctor with thc 
largest eigenvalue). Also, the variation along the time- 
linc is shown as thc parabolic curvc whcn thc graph 
is sliced orthogonal to the vertical axis. For example, 
the uppcr part rcprcscnts illumination variation along 
the time-line of a sunny day, and lower part represents 
that variation on rainy and cloudy days. As can bc 
seen clearly, the most significant variation caused by il- 
lumination and timc in thc L1(x, y, t )  can bc capturcd 
with the first few eigenvectors. So, by constructing 
an cigcnspacc of thc L1(x, y, t )  scqucncc with thc first 
k significant eigenvectors, and mapping all L1(x, y, t)s 
onto thc cigcnspacc, wc can obtain a vcry cfficicnt rcp- 
resentation of the variation of illumination in the input 
imagc scqucncc. 

L 1 . 
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3 Direct estimation of Illumination im- 
ages 

Using thc illumination cigcnspacc, dircct cstimation 
of illumination image is done given an input image 
which contains moving objccts. Wc considcr that thc 
global similarity of the illumination image is measured 
by thc distancc wcighcd by contribution ratio of cigcn- 
values in the illumination eigenspace. Thus, we divide 
thc input imagc by a rcflcctancc imagc to gct a pscudo 
illumination imagc L* which includcs dynamic objccts. 
Using it as a qucry, thc bcst approximation of thc cor- 
responding illumination image L is estimated from the 
illumination cigcnspacc. 

i' = arg minL: c tuj Jwj) - J(L'~,  j ) )  (7) 

whcrc 3 is a function which maps an illumination 
image onto the illumination eigenspace, and wj = 
X3/Ci2 At in which wc dcnotc X an cigcnvaluc. Fi- 
nally, the true illumination image L(x, y,t)  and the 
camcra gain G(t) arc dcrivcd using thc mapping ta- 
ble from L'. For a high-dimensional nearest neighbor 
scarch, wc cmploycd thc SR-tree mcthod [ll] which is 
known for its fast search algorithm especially for high- 
dimcnsional and non-uniform data structurcs such as 
natural images. Figure 3 shows the data flow of this 
dircct cstimation proccss. 
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Figurc 3: Flow chart of dircctly cstimating thc illumi- 
nation images. 

The number of stored images for this experiment 
was 2048 and thc contribution ratio was 84.5% at 13 
dimensions, 90.0% a t  23 dimensions, and 99.0% at 120 
dimensions. Thc graph of thc cumulativc contribution 
ratio is as shown in Figure 4. We choose to use 99.0% of 
cigcnratio for this cxpcrimcnts. Thus thc compression 
ratio is about 17:1, and the space needed to store the 
subspacc is about 32 MBytcs. 
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Figure 4: Contribution ratio of the illumination eigen- 
vectors. 

4 Result 

The result of the illumination image search is shown 
in Figurc 5. In this figurc, starting with thc lcft hand 
side column, the first column shows input images I, 
the sccond column shows pscudo illumination imagcs 
L*, the third column corresponds to estimated illumi- 
nation images e'. The right end column shows the 
background imagcs which corrcspond to thc cstimatcd 
illumination images. The nearest neighbor search in 
PCA is rcasonably robust to cstimatc thc most simi- 
lar illumination image L' from the pseudo illumination 
imagc L*. Howcvcr, sincc thc sampling of thc illumi- 
nation images is sparse, there are slight differences in 
shadow shapcs. It  is possiblc to acquirc thc cxactly cor- 
rect illumination image L when the database is dense 
cnough, but it is not casy to prcparc such a database. 
To solve this problem, we are considering to work on 
shadow intcrpolation for gcncrating appropriatc illumi- 
nation images. We believe the illumination images de- 
rived from our frarncwork has grcat advantagc in cvcn 
simple interpolation schemes since they are totally free 
from thc sccnc tcxturc. 

As for the computational cost, the average time of 
the nearest ncighbor scarch is shown in Tablc 1 with 
MIPS R12000 300MHz, when the number of stored illu- 
mination imagcs is 2048 and thc imagc sizc is 360 x 243. 
Since the input image is obtained a t  the interval of 
33ms (at 30 framcs/scc), thc cstimation timc is fast 
enough for the realtime processing. 

Table 1: Dimension of the illumination eigenspace, 
Contribution ratio and NN scarch cost. 

48 
95.0 
7.9 

23 
90.0 
6.8 

Dimension 
Contribution ratio(%) 
NN Search time(ps) 

120 
99.0 
12.0 

13 
84.5 
6.7 



Figure 5: The result of estimating illumination images. (a)Input images I ,  (b)Pseudo illumination images L* 
which are computed by directly dividing input images by a reflectance image, (c)Estimated illumination images 2 
dcrivcd by ncarcst ncighbor scarch in illumination cigcnspacc, (d)background imagcs corrcsponding to cstimatcd 
illumination images 

5 Conclusion 

In this papcr, wc prcscnt a mcthod to cstimatc illu- 
mination images directly from input images in realtime. 
Estimated illumination imagcs arc uscd to normalize 
and manipulate target image sequence with regard to 
illumination variation, for cxamplc, to climinatc shad- 
ows, as a preprocessing stage of video surveillance sys- 
tcms using illumination cigcnspacc. The dircct csti- 
mation method is demonstrated over an urban scene 
imagc datasct which has drastic variations in lighting. 
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