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Abstract 
We study the problem of segmenting independently mov- 

ing objects in a video sequence. Several algorithms exist 
for classifying the trajectories of the feature points into in- 
dependent motions, but the performance depends on the 
validity of the underlying camera imaging model. In this 
paper, we present a scheme for automatically selecting the 
best model using the geometric AIC before the segmenta- 
tion stage. Using real video sequences, we confirm that the 
segmentation accuracy indeed improves if the segmentation 
is based on the selected model. 

1. Introduction 
Segmenting individual objects from backgrounds is 

one of the most important tasks of video processing. 
For images taken by a stationary camera, many seg- 
mentation algorithms based on background subtrac- 
tion and interframe subtraction have been proposed. 
For images taken by a moving camera, however, the 
segmentation is very difficult because the objects and 
the backgrounds are both moving in the image. 

While most segmentation algorithms combine vari- 
ous heuristics based on miscellaneous cues such as op- 
tical flow, color, and texture, Costeira and Kanade [I] 
presented a segmentation algorithm based only on the 
image motion of feature points. 

Since then, various modifications and extensions of 
their method have been proposed [3, 6, 10, 13, 15, 161. 
Gear [3] used the reduced row echelon form and graph 
matching. Ichimura [6] applied the discrimination cri- 
terion of Otsu [20] and the QR decomposition for fea- 
ture selection 171. Inoue and Urahama 1101 introduced 
fuzzy clustering: Incorporating model selection using 
the geometric AIC [12] and robust estimation using 
LMedS [22], Kanatani [13, 15, 161 derived segmenta- 
tion algorithms called subspace separation and afine 
space separation. Maki and Wiles [18] and Maki and 
Hattori [19] used Kanatani's idea for analyzing the ef- 
fect of illumination on moving objects. Wu, et al. [27] 
introduced orthogonal subspace decomposition. 

To begin the segmentation, the number of indepen- 
dent motions needs to  be estimated. This has usu- 
ally been handled using empirical thresholds. Recently, 
Kanatani and Matsunaga [17] and Kanatani 1151 pro- 
posed the use of model selection for this. 

For tracking moving feature points, most authors 
use the Kanade-Lucas-Tomasi algorithm (241. To im- 
prove the tracking accuracy, Huynh and Heyden [5] and 
Sugaya and Kanatani [23] showed that outlier trajecto- 
ries can be removed by robust estimation using LMedS 
1221 and RANSAC 12). Ichimura and Ikoma [B] and 
Ichimura 191 introduced nonlinear filtering. 

In this' paper, we propose a new method for im- 
proving the accuracy of Kanatani's subspace separa- 
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tion [I 3, 151 and affine space separation 1161. According 
to Kanatani [13, 161, the trajectories of feature points 
that belong to  a rigid object are, under an affine cam- 
era model, constrained to be in a 4-dimensional sub- 
space and a t  the same time in a 3-dimensional affine 
space in it. If the object is in a 2-dimensional rigid 
motion, the resulting trajectories are constrained to 
be in a 3-dimensional subspace or more strongly in a 
2-dimensional affine space in it. Theoretically, the seg- 
mentation accuracy should be higher if we use stronger 
constraints. However, it has been pointed out that this 
is not necessarily true due to the modeling errors of the 
camera imaging geometry [16]. 

To cope with this, Kanatani [15, 16, 171 proposed 
a posteriori reliability evaluatio; using the-geometric 
AIC [12] and the geometric MDL [14]. However, his 
procedure is based on the assumption that the segmen- 
tation is correctly done. In reality, if the final result is 
rejected as unreliable by Kanatani's method, one can- 
not tell whether the assumed model was wrong or the 
segmentation was not correctly done. 

In this paper, we introduce model selection a priori 
for choosine the best camera model and the associated " 
space before doing segmentation. Using real video se- 
quences, we demonstrate that the segmentation accu- 
racy indeed improves if the segmentation is based on 
the selected model. 

2. Trajectory of Feature Points 
We track N rigidly moving feature points over M 

frames and let (x,,, y,,) be the image coordinates of 
the a t h  point in the 6th frame. We stack all the image 
coordinates vertically and represent the entire trajec- 
tory by the following trajectory vector: 

Regarding the XYZ camera coordinate system as 
the world coordinate system, we fix a 3-D object co- 
ordinate system to the moving object. Let t ,  and 
{i,, j,, k,) be, respectively, its origin and 3-D or- 
thonormal basis in the 6th frame. If we let (a,, b,, c,) 
be the 3-D object coordinates of the crth point, its 3-D 
position in the 6th frame is 

with respect to the world coordinate system. 
If an affine camera model (e.g., orthographic, weak 

perspective, or paraperspective projection) is assumed, 
the 2-D position of T ,  in the image is given by 

( ) = Aa.r,, + b,, 

where A, and b, are, respectively, a 2 x 3 matrix and 
a Zdimensional vector determined by the position and 



orientation of the camera and its internal parameters 2-dimensional affine spaces. However, we do not know 
in the rcth frame. From eq. (2), we can write eq. (3) as a priori if the object motion is planar or which con- 

straint should be used for a given video seqrience. 

where fig,, ml,, m2,, and m3, are 2-dimensional vec- 
tors determined by the position and orientation of the 
camera and its internal parameters in the rcth frame. 
From eq. (4), the trajectory vector p, of eq. (1) can be 
written in the form 

where mo, ml. m2 and m3, are the 2M-dimensional 
vectors obtained by stacking m o , ,  ml,, mz,,and ms, 
vertically over the M frames, respectively. 

3. Constraints on Image Motion 
Eq. (5) implies that the trajectory vectors of the 

- . .  

feature points that belong to the same object are con- 
strained to be in the 4-dimensional subspace spanned 
by {mo,  ml, m2, m3) in RzM.  It follows that multi- 
ple moving objects can be segmented into individual 
motions by separating the trajectory vectors {p,) into 
distinct 4-dimensional subspaces. This is the principle 
of the subspace separation 113, 151. 

However, we can also see that the coefficient of mo 
in eq. (5) is identically 1 for all a. This means that the 
trajectory vectors are also in the 3-dimensional affine 
space within that 4-dimensional subspace. It follows 
that multiple moving objects can be segmented into 
individual motions by separating the trajectory vectors 
{p,) into distinct 3-dimensional affine spaces. This is 
the principle of the afine space separation [16]. 

Theoretically, the segmentation accuracy should be 
higher if a stronger constraint is used. However, eq. (5) 
was derived from an affine camera model, while the 
imaging geometry of real cameras is perspective projec- 
tion. It  can be shown [16] that the modeling errors for 
approximating the perspective projection by an affine 
camera are larger for the affine space constraint than 
for the subspace constraint. In general, the stronger 
the constraint, the more vulnerable to modeling errors. 
Conversely, the solution is more robust to modeling er- 
rors, if not very accurate, when weaker constraints are 
used. 

According to Kanatani [16], the choice between the 
subspace separation and the affine space separation de- 
pends on the balance between the camera modeling 
errors and the image noise. The subspace separation 
performs well when the perspective effects are strong 
and the noise is small, while the affine space separation 
performs better for large noise with weak perspective 
effects. However, we do not know a priori which is the 
case for a given video sequence. 

If the object motion is planar, i.e., if the object 
merely translates, rotates, and changes the scale within 
the 2-dimensional image, one of the three vectors m l ,  
m2, and r n s  can be set 0. Hence, p, is constrained to 
be in a 3-dimensional subspace. Since the coefficient 
of mo is identically 1, p, is also in a 2-dimensional 
affine space within that 3-dimensional subspace. It fol- 
lows that we can segment multiple planar motions into 
individual objects by separating the trajectory vectors 
{p,) into distinct 3-dimensional subspaces or distinct 

For simplicity, let us hereafter call the constraint 
that specifies the camera imaging model and the type 
cf motion the camera model. As we have observed, 
we can expect high accuracy if we know which camera 
model is suitable and accordingly use the correspond- 
ing algorithm. We may test all the models and the as- 
sociated segmentation methods and evaluate the relia- 
bility of the results a posteriori, as Kanatani suggested 
[15, 16, 171. However, this works only if the segmenta- 
tion is done correctly; if the final result is rejected as 
unreliable. one cannot tell whether the assumed model 
was wrong or the segmentation was not correctly done. 

To overcome this difficulty, we introduce camera 
models that should be valid irrespective of the segmen- 
tation results. If, for example, one object is moving 
relative to a stationary backgrouncrl while the camera 
is moving, two independent motions are observed in 
the image: the object motion and the background mo- 
tion. Since the trajectory vectors for each motion is 
in a 4-dimensional subspace or a 3-dimensional affine 
space in it, the entire trajectory vectors {p,) should 
be in an 8-dimensional subspace C8 or a 7-dimensional 
affine space A7 in it1 . 

If the object motion and the background motion are 
both planar, the trajectory vectors for each motion 
are in a 3-dimensional subspaces or a 2-dimensional 
affine spaces in it, so the entire t,rajectory vectors 
{p,) should be in a 6-dimensional subspacc C6 or a 
5-dimensional affine space A v n  it. 

It follows that in the pre-segmentation stage we have 
C8, A7, C6, and A" as candidate models irrespective of 
the segmentation results. If the number of indcpendent 
motions is m, they are replaced by C4m, A4m-1, C3m, 
and A3m-1, respectively. 

5. Model Selection 

A naive idea for model selection is to fit the candi- 
date models to the observed data and choose the one for 
which the residual, i.e., the sum of the square distances 
of the data points to the fitted model, is the smallest. 
This does not work, however, because the model that 
has the largest degree of freedom, i.e., the largest num- 
ber of parameters that can specify the model, always 
has the smallest residual. It  follows that we must bal- 
ance the increase in the residual against the decrease 
in the degree of freedom. For this purpose, we use the 
geometric AIC [ l l ,  121 (see [25, 261 for other criteria). 

Let n = 2M. For the N trajectory vectors {p,) 
in an n-dimensional space, define the n x n moment 
matrix by 

N 

Let X I  2 X2 > . . . > An be its eigenvalucs. If we 
optimally fit a &dimensional subspace to {p,), the 

T h e  minimal subspace t h a t  inclrldes a n  nl-dimensional s u b  
space and  a n  nz-dimensional subspace has dimension nl + nz, 
while t h e  minimal affine space t h a t  includes an ml-din~ensional  
a f i n e  space and  a n  m2-dimensional affine spare  has dimension 
m l  + m2 + 1. 



Model 1 1  LH 1 A7 1 L I A5 Method 1 1  C-K I ICH 1 S-M I LX 1 A7 I C6 I A' 
G-AIC 1 1  836.9 1  779.1 1 688.9 ( 631.1 Correctness (Yo)  1 1  85.3 1  92.6 1 86.8 1  75.0 1 86.0 1 97.7 1 100 

Figure 1: Upper: Input video sequence (lst, 8th, 15th, 22th, 30th frame) and successfully tracked 136 feature points. Lower: 
The geometric AIC for each model (left); the correctness of segmentation for different methods (right). 

resulting residual J L d  is given by 

The geometric AIC has the following form [ l l ,  121: 

Here, c, which we call the noise level, is the standard 
deviation of the noise in the coordinates of the feature 
points. 

For fitting a d-dimensional affine space to {p,), the 
geometric AIC is computed as follows. Define the n x n 
moment matrix matrix by 

where pc is the centroid of {p,). Let A' > Ah 2 . . . 2 
A; be the eigenvalues of the matrix M I  The  residual 
J d d  of fitting a d-dimensional affine space to  {p,) is 
given by 

n 

The geometric AIC has the following form [ll, 121: 

We compare the geometric AIC for each candidate 
model and choose the one that has the smallest geo- 
metric AIC. 

6. Real Video Experiments 
We tested our proposed method using real video 

sequences. The image size is 320 x 240 pixels. The 
number of independent motions can be estimated by 
the method described in (17, 151. In our experiments, 
however, we assumed that the number of independent 
motions was two in order to focus only on the segmen- 
tation performance of our proposed model selection. 
We first removed outlier trajectories by the method 
described in [23] and applied the model selection to 
the resulting outlier-free trajectories. 

Fig. 1 shows five frames decimated from a 30 frame 
sequence taken by a moving camera. We correctly 
tracked 136 points, which are indicated by the sym- 
bol in the images. 

We fitted to them an &dimensional subspace C8, 
a 7-dimensional affine space A7, a &dimensional sub- 
space C6, and a 5-dimensional affine space A5 and com- 
puted their geometric AICs. The lower left table lists 
their values. As we can see, the 5-dimensional affine 
space A5 was chosen as the best model. 

In order to compute the geometric AIC as given in 
eqs. (8) and ( l l ) ,  we need to know the noise level c. 
Theoretically, it can be estimated from the residual of 
the most general model Cs if the noise in each frame is 
independent and Gaussian [l 11 . In reality, however, 
strong correlations exist over consecutive frames, so 
that some points are tracked unambiguously through- 
out the sequence, while others fluctuate from frame to  
frame [23]. Considering this, we empirically set c to 0.5 
pixels2 . We have confirmed that changing this value 
over 0.1 N 1.0 does not affect the selected model in this 
and the subsequent experiments. 

This video sequence was taken from a distance, and 
the object (a car) and the background are moving al- 
most rigidly in the image. Hence, the selection of A5 
seems reasonable. The lower right table compares the 
correctness of segmentation measured by (the num- 
ber of correctly classified points)/(the total number of 
points) in percentage for different methods. The cor- 
rectness of individual matches was judged by visual 
inspection. 

In the table, "C-K" means the method of Costeira 
and Kanade [I],  which progressively interchanges the 
rows and columns of the (shape) interaction matrix to  
make it approximately block-diagonal in such a way 
that the off-diagonal elements have small absolute val- 
ues; "ICH" means the method of Ichimura [6], who 
applied the Otsu discrimination criterion [20] to each 
row of the interaction matrix and segmented the ele- 
ments according to  the row with the highest discrim- 
ination measure; "S-M" indicates the result obtained 
by partitioning the graph defined by the interaction 
matrix (the feature points as vertices and the absolute 
values of its elements as the weights of the correspond- 
ing edges) in such a way that the normalized cut [21] is 
minimized. The fuzzy clustering of Inoue and Urahama 
[lo] is also based on a similar idea. The symbols Ls, 
A7, L6, and As indicate the subspace separation and 
affine space separation using the corresponding mod- 
els. As expected, the affine space separation using the 
selected model A5 alone achieved 100% correct seg- 
mentation. 

Fig. 2 shows a different sequence, through which 73 

We also used this value for the outlier removal procedure 
[231. 



hlodrl  I( LX I A' I Lh ( Ar' Method I/ C-K I ICH 1 S-M 1 LX 1 -4' I L(' I 
C:-i\I(: 11  2117.9 1 2281.5 1 3158.5 1 3340.1 Correctness (%) 11 76.7 1  58.9 1  76.7 1  93.1 1 60.2 57.5 

Figure 2: Upper:  Inpu t  video sequence ( l s t ,  25th ,  50th ,  75th,  100th frame) a n d  successfully tracked 73  feature points. 
Lower: T h e  geometric AIC for each model (left); t h e  correctness of segmentation for different me thods  (right). 

points are tracked over 100 frames. This sequence was 
taken near the moving object (a person) by a moving 
camera, so the perspective effects are relatively strong. 
As expected, the 8-dimensional subspace La was chosen 
as the best model, and the subspace separation using 
it gave the best result. 

The reason why the subspace separation did not 
achieve 100% correct segmentation seems to be that 
the method is based on the affine camera model, al- 
though the modeling error is smaller than for the affine 
space separation. In fact, we observed that the accu- 
racy unexpectedly decreased as we increased the num- 
ber of the internally used LMedS iterations to  impose 
the subspace constraint very strictly. 

7. Concluding Remarks 

We have proposed a technique for automatically se- 
lecting the best model by using the geometric AIC in 
an attempt to improve the segmentation accuracy of 
the subspace separation [13] and the affine space sepa- 
ration 116) before doing segmentation. Using real video 
sequences, we demonstrated that the separation accu- 
racy indeed improves if the segmentation is based on 
the selected model. 
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