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ABSTRACT 

For global motion estimation in model-based coding, this paper 
proposes a constrained spatio-temporal gradient method using 
contour information. To overcome the local minimum problem 
in motion tracking of the conventional spatio-temporal gradient 
method, the translational matching position detected based on 2- 
D contour matching and the rotational motion model are 
introduced as constraints. Simulation results show that the 
proposed method yields smaller mean square error (MSE) than 
the conventional method. 

1. INTRODUCTION 

Model-based coding is one of approaches that parameterize an 
object, e.g., head or facial component in a head-and-shoulder 
image. Assuming a parameterdriven wireframe model of a face, 
an encoder analyzes motion parameters of a face and transmits 
them, and a decoder synthesizes a facial image based on them. If 
an encoder can parameterize an object accurately, the amount of 
bits for representation of parameters is very low. In this term, 
model-based coding has been studied as a very low bit-rate 
synthetic image coder and its accurate motion parameterization 
has been primarily investigated. For motion estimation and 
image synthesis, fitting of a wireframe to the first frame 
(initialization) is also needed, and the texture of the first frame 
arid the changed parts in subsequent. frames should be 
transmitted. There has been few'general method to initialize a 
wireframe, which is one of the main concern in model-based 
coding. A texture transmission method [I-31 uses the traditional 
image coding method, i.e., discrete cosine transform (DCT). 
Recently, model-based coding is regarded as an application to 
man-machine interfacing and virtual reality, and one of the most 
important parts of model-based coding is the accurate and robust 
estimation of parameters. 

As a human face contains various facial expressions, it is 
difficult to efficiently parameterize a face with a simple 2-D 
model. So 3-D analysis and synthesis of a facial image are 
needed and there are famous 3-D wirefame models like Candide 
[4], which is controlled by wireframe parameters. The wireframe 
motion parameters are divided into two parts: global and local. 
Global motion parameters with translational arid rotational 
values specify the 3-D position and orientation of the wireframe 
model, while local ones describe the facial expressions of the 
model. Facial expressions are represented by action units (AUs) 
[5] that describe various movement combinations of facial 
components such as eyes, eyebrows, and mouth. If global motion 
parameters are found tnaccurately, the local ones cannot be 
estimated correctly because sonie facial components are 
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mislocated. In real image sequences, finding global motion 
parameters is difficult because they depend on local motions. 
Also in the context of global motions, local motions and noise 
cannot be effectively distinguished, which is one of difficulties 
in motion estimation. 

To find global motion parameters quickly and accurately in 
model-based coding, the spatio-temporal gradient methods have 
been presented [3,4], Also in computer vision field, feature 
tracking and contour matching methods were developed [6,7]. 
The spatio-temporal gradient method computes 3-D parameters 
by combining the orthogonal/perspective projection model with 
the optical flow constraint, in which least-square formulation is 
used. The spatio-temporal gradient method is quite accurate for 
small motions and noise. Utilizing feature points or contour 
information can lead to robust algorithms. However, it is quite 
difficult to find the corresponding feature points in the previous 
image if occlusion occurs. Contour information can be found 
around mouth, eyes, and chin. Kass et al. [a] proposed 'snakes', 
with the form of active contours. Contours can robustly find the 
locations of the facial components. However, it is not 
appropriate to directly apply this 2-D approach to 3-D 
environments. In this paper, a constrained spatio-temporal 
gradient method for global motion estimation is proposed. The 
reference point obtained by 2-D contour matching is used in the 
context of the least-square formulation, and the error computed 
at each step is used for weighting the constraint. 

2. FACIAL REGION TRACKING BASED ON THE 
SPATIO-TEMPORAL GRADIENT METHOD 

The block diagram of a typical model-based coder is shown in 
Fig. 1. It is composed of three parts in both the encoder and 
decoder: global motion estimation, local motion estimation, and 
texture update. Additionally, the initialization part is used for the 
first frame of the sequence. At the encoder and decoder, a 
wireframe model is shown and motion analysis is based on the 
model. In this paper, only the wireframe model, global motion 
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Fig. 1. Block diagram of a typical model-based coder. 
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analysis, and texture mapping are described. The main purpose 
of this paper is to estimate robust global motion parameters by 
neglecting any local motion parameters and texture update. 

A. Wireframe model 

In model-based coding, it is assumed that a wireframe model 
is known at a transmitter and receiver. An example of a 
wireframe model is shown in Fig. 2(a), where the model is an 
approximate shape of a face. The position of the model is set by 
global parameters and its facial expression is controlled by local 
parameters that describe the movement of each facial component. 
Fig. 2(b) illustrates a wireframe showing local expression of 
opening the mouth. The model is constructed according to the 
shape in [3]. About 300 triangle patches are used in this model. 
If more triangles are used, the shape will be more accurate and 
natural, which increases the computational cost. Because a 
matching model is known, approximated depth information can 
be obtained from the wireframe model specified. 

B. Conventional spatio-temporal gradient method for global 
motion estimation 

A conventional spatio-temporal gradient method is based on the 
following rigid-body assumption; 

I(x,y,t) = I(x+n,y+b,t + 1) (1) 
where I(x,y.r) and I(x,y,t+l) represent intensities of a pixel at 
(x,y) at time t and t+l ,  respectively, and a and b denote the 
translational motion along x and y axes, respectively. 

The assumption signifies that the intensity of a pixel does not 
vary in time. Using Taylor series expansion and some 
rearrangements give the first-order optical flow constraint [9] 

I,u+I,.v+I, = o  (2) 

where I,=aI(xj,t)lax, I,=aI(xy,t)lay, and I,=aI(xy,t)lat represent 
derivatives of I(x,y,t) with respect to x, ,y, and I, respectively. 
Velocities along x and y directions are denoted by u=ax/at and 
~ a y / a t ,  respectively, and (u,v) is referred to as a 2-D motion 
vector of a point. Derivatives I,, I, and I, in a digital image are 
approximated by I,=I(x+ly,t)-I(xjl,t), I,= I(x+ly,t)-I(xj,t), and 
I,= I(x+ 1 y,t)-I(xy,t), respectively. 

To obtain 3-D parameters, the 2-D motion vector (u,v) is 
described in terms of 3-D motion parameters. If an orthogonal 
projection model is used, x and y components of (u,v) at (x,y), 
denoted by u,,, and v,~,,,, can be represented as 

u,,, = W,Y - w,~,,, + T. 
V = -W:X + w,z,,, + Ty (3) 

where w,, w, and w, are rotational parameters about the x, y, and 
z axes, respectively, and T, and T,, are translational parameters 
along the x and y directions, respectively. Another unknown 
value Z,,., the depth information at @,)I) is obtained from the 
given wireframe model. 

Inserting Eq. (3) into Eq. (2) yields [3] 
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(a) (b) 
Fig. 2. Wireframe model: (a) facial wireframe, (b) facial wireframe 

with mouth open. 

where N denotes the number of pixels considered, and I,,, I,, 
and I,,, represent I,, I,, and I, at the n" point, respectively. Eq. (4) 
can be expressed, equivalently, in vector-matrix form 

AX= Y ( 5 )  
where A denotes an Nx5 matrix, X is a 5x1 parameter vector, 
and Y represents an Nxl temporal-gradient vector. Then the 
parameter vector X is expressed as 

x = (A*A)-'A~Y (6) 
where the superscript -1 denotes inverse operations. 

Since this least-square method uses a number of samples in a 
facial area that contains various changes of expressions, a 
number of outliers may exist among the extracted samples. 
Sampling only in unchanged area of a face reduces the number 
of outliers, which is not easy practically. Or, outliers such as the 
pixels related to facial expression components or to noise must 
be rejected. Many methods have been presented. Li and 
Forchheimer used M-estimators to reject outliers [lo], and Choi 
et al. [3] rejected outliers error values of which are greater than 
the average error. However these methods cannot guarantee that 
their solutions are global minima or at least they are good for the 
human visual system (HVS), which is the limitation of the 
conventional spatio-temporal gradient method. This approach is 
good at finding accurate motion parameters in the limited range 
(up to about 10 pixels), but after long sequence tracking, 
sometimes its results degrade greatly because its solution falls 
into local minima, resulting in deviated face boundary tracking. 
This case yields poor subjective evaluation though it produces 
relatively small MSE, compared with other tracking techniques. 
The MSE defined by 

is minimized by the least-square method, where I(k,l) (I'(k,l)) 
represents the original (synthesized) pixel intensity and the 
synthesized pixel intensity in KxL area of interest that is smaller 
than the entire image size. Since Eqs. (1)-(4) correspond to 
modeling based on minimization of the MSE, this approach 
gives small MSE. But in long sequences, though the MSE is 
continuously minimized, filling in local minima may occur 
because of abrupt motions or large noise. Note that minimization 
of the MSE does not always lead to best solutions related to the 
HVS. 

C. Synthesis of a facial image 

After the model parameters are found, they are transmitted and 
the receiver synthesizes a facial image using them. Assuming 
that the texture of the first frame is already known at a receiver, 
each triangle patch in the model is plated with the texture 
information by means of the affine transfonn: 



where aij, lSiS2, lSjS3, denotes the affine transform coefficients, 
the superscript t means transposition, and (x,y) ((x'y')) signifies 
the original (transformed) position. 

3. PROPOSED GLOBAL MOTION ESTIMATION 

To overcome the local minimum problem, several numerical 
methods have been presented. One of them is simulated 
annealing that tries all possible positions gradually. It is a useful 
numerical method, however it requires a high computational 
complexity. In head tracking, some cues can be used to 
overcome the local minimum problem, without trying all 
possibilities. As mentioned before, some computer vision 
methods, i.e., feature tracking or contour matching, can 
approximately find the position of a head. Although it gives a 
larger MSE than the spatio-temporal gradient method, it 
produces reasonable results in terms of subjective performance 
related to the HVS. So the useful information from other 
approaches can *be combined with the conventional spatio- 
temporal gradient method to avoid local minima. Some values 
obtained from other approaches are used as constraints in 
solving the least-squares formulation with a Lagrangian 
multiplier. Contour matching, based on the concept of 'snake' [8] 
is employed in the proposed algorithm. The 2-D position that 
maximizes the contour energy Econ,o,, defined by 

Em, = IJE,, + E*)ds (7) 

is used as the matching point of the contour, where the line 
energy ElinC=I(xj) and edge energy E ,~ , ,=- IVI(X~)~~ are defined 
by the pixel intensity and the negative of the gradient magnitude 
square of I(xy), respectively, with the symbol V representing 
the gradient operation. In this paper, the contour consisting of 
chin boundaries of the wireframe model is used as the reference 
contour and the position that maximizes Eq. (7) is detected. 

The 2-D (x,y) parameter of the wireframe model is detected by 
searching the matching point. This matching point detected can 
be denoted as the translational vector Xco,,o~[xcon,o,, ycon,o,,]' of 
the reference contour. 

Besides the translational vector X,,,,, obtained from contour 
matching, another constraint for rotational parameters is 
assumed. In long sequence tracking, rotational parameters may 
change about three axes. But after a while, in most cases, 
rotational parameters return to the values that represent the 
frontal directions with all the rotational parameters equal to 
zeros. So this assumption is modeled and also used as an 
additional constraint. This modeling can be constructed in terms 
of the rotational vector X,,,lo, expressed as X,,,,io,=[O 0 0)'. If 
the constraint parameter vector Xc = [ x ~ ~ , , ~ ~ ~ , X ~ ~ ~ ~ ~ , , ~ ] ~  is used, the 
constrained least-squares equation fur the constrained cost 
function Jc with a Lagrangian multiplier a can be expressed as 

Jc8 = ll~-V12+allTx-xCll2 (8) 
where 1 1 . 1 1  represents a norm of a vector. The nondiagonal 
components in the matrix T denote the dependency between a 
pair of parameters, which are set to zeros in our experiments. 
The constraint parameter vector X, consists of the translational 
parameter vector Xco,l,o,,,., obtained from 2-D contour matching 
and rotational parameter vector X,ol,,,ion by the rotational model. 
As a increases, the solution of Eq. (8) becomes closer to that 
solely determined by the constraint. In experiments, cx is set to 
100. The matrix T and the constraint parameter vector X, are 
expressed as 

Xc = [xroration xcontmr ? = [O 0 0 Xrorotion ~conrourY 

where T is set to the 5x5 identity matrix IS in experiments. 
Differentiation of Eq. (8) with respect to X and setting to zero 

gives 
X=(A~A+~T~T)-'(A~Y+~T~X,). (9) 

Note that the minimum MSE criterion sometimes yields the 
solution that is not desirable in terms of subjective evaluation. If 
the face part of the wireframe model tracked by the conventional 
least-squares method is significantly misaligned, it is deairable to 
discard that solution and try to escape the local minimum point. 
In the proposed algorithm, iterative weighting is employed to 
strongly constrain against the local minima. A weighting 
coefficient ek is determined in terms of the average squared error 
computed at the iteration: 

q = 4 A x k  - Y f / N  (10) 

where 2 denotes the parameter vector computed by Eq. (9) at 
the Ph iteration and p i s  a constant set to 200 in experiments. 

Applying this weighting coefficient to the constraint term gives 
the weighted cost function J,  defined by 

J , ( X ) = I A X - ~ ~ - M ~ ~ X - X ~ ~ '  (1 1) 
and it gives the solution: 

x=(ATA +aekTTT)"(AT~ +cre ,~T~, ) .  (12) 

4. EXPERIMENTAL RESULTS 

The 288x352 Miss America image sequence consisting of 150 
frames is used in experiments. The first frame of the test 
sequence is shown in Fig. 3. The performance of the proposed 
method is compared with that of the conventional spatio- 
temporal gradient method [3] in terns of the MSE. In tracking 
the sequence, five iterations are performed for both methods. 
Note that only global motions are estimated and local motion 
(facial expressions) analysis is not considered here. Local 
motions are considered as noise and the corresponding pixels are 
regarded as outliers and rejected. Outliers are rejected in both 
methods if their error values are greater than the average error 
[3]. The initial position of the wireframe is fitted manually and 
an example of initial setting is shown in Fig. 4. 

Fig. 5 shows the MSE as a function of the frame number by 
the conventional spatio-gradient method and the proposed 
method. In some frames, the MSE of the proposed method is 
smaller than that of the conventional method. The MSE values 
by both methods are almost the same in the frames of which 
MSEs are relatively small. In Eq. (12), large weighting is 
employed as constraints for the case in which the error in Eq. 
(10) from the previous iteration is relatively large. In the frames 
that produce a relatively large MSE, e.g., larger than 20, the 
proposed method reduces the MSE value by imposing the 
constraint greatly. But in some frames, the MSE by the proposed 
method is larger than that of the conventional method, where the 
contour information does not lead to accurate matching. 

A tradeoff exists between the MSE and subjective evaluation: 
MSE values can be quantitatively computed while there is no 



general measure for subjective evaluation. So new measures 
faithfully reflecting subject performance are needed. Locus of 
(xy) positions tracked by the motion estimation algorithm can 
be one of them, because it is easily perceived to human eyes. In 
experiments, the position detected by 2-D contour matching is 
assumed to be appropriate to the HVS. 

Fig. 6 shows loci of (xy) positions detected by the 
conventional and proposed algorithms relative to the positions 
detected by contour matching. Contour matching is considered 
to be a representation appropriate for the subjective evaluation. 
The closer the locus to the center of the graph, the smaller error 
it gives, compared with the locus detected by contour matching. 
The start positions of both methods are at the origin, and the 
final positions are close to each other. For simple representation, 
the two loci are plotted every five frames. The overall scope of 
the locus by the proposed method is closer to the center of the 
graph than that of the conventional method, which means that 
the tracking trajectory by the proposed method closely follows 
that of the contout. information. 

Fig. 7 shows the wireframe superimposed on the input image 
(82nd frame). Figs. 7(a) and 7(b) show results of the 
conventional and proposed methods, respectively. Fig. 7(a) 
shows the misaligned wireframe caused by the local minimum 
problem whereas Fig. 7(b) shows the reasonable wireframe 
tracking. Performance comparison with Fig. 7 shows that for the 
cases in which the spatio-temporal method fails to track the 
input image sequence, the contour information can be used as a 
useful cue. When this information is formulated as a weighted 
constraint, it has a noticeable effect on the fiames whose MSE 
values are relatively large. 

5. CONCLUSIONS AND FUTURE WORKS 

To overcome the local minimum problem in motion tracking of 
the conventional spatio-temporal gradient method, the proposed 
algorithm introduces additional informations such as the 
translational parameters from contour matching and the 
rotational parameters from the motion modeling. Simulation 
results show that the proposed global motion estimation 
algorithm based on the constrained spatio-temporal gradient 
method yields noticeable image quality improvement for 
significantly misaligned cases of motion tracking. Further 
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research will focus on development of more accurate and reliable 
cues helpful for detection of the global minimum. 
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Fig. 6. Loci of posit~ons detected by  conventional and proposed 
algorithms relative to postions detected by contour 
matching. 
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Fig 7 Wireframe super~mposed on the Input Image (a) 

convent~onal method, (b) proposed method 




