
MVA2002 IAPR Workshop on Machine Vision Applications, Dec. 11 - 13, 2002, Nara- ken New Public Hall, Nara, Japan 

8-26 
Pose Estimation of Polygonal Object in Monocular Vision 

using Parametric Equations of Vertices 

Mohamed ~knallal' 
Graduate School of ~ c o l e  des Mines de Paris 

Jean ~ e u n i e ?  
Department of Computer science 

University of Montrkal 

Abstract relating the coordinates of the vertex A and its projection a 
with the direction cosines: 

In this paper we model the camera-polygon system with 
parametric equations to locate a polygonal object in space. cosa. = J- 

This leads to a nonlinear optimization method under true X +YO +fa 
perspective for monocular vision with a single image. The 
algorithm finds directly the 3D location in the camera co- cos p. = d-' 
ordinate system without estimating rotation and/or X, +Yo  +fa 
translation matrices. As for all object location algorithms, 
the method assumes that the size and shape of the polygo- 

f 

nal object is known and that the camera is calibrated. = J- 

1 Introduction 

Usually, the pose estimation problem [2,3,4,7,8] consists 
in determining the rotation and translation parameters of an 
object with respect to a coordinate system from a single 
image knowing the camera intrinsic parameters and the 
object identity (shape and size). In stereovision or with 
multiple images, finding landmark correspondences in the 
two images [9,10,11,12], knowing the extrinsic parameters 
of the cameras solves this problem. In monocular vision 
with a single image [9,10], we must rely on a pnon knowl- 
edge about the object shape and size to perform the same 
task to compensate for the lack of information. Both tech- 
niques are used in many applications such as robot 
localization. In this paper we propose our contribution to 
solve the pose problem [13,14,16] for polygonal object 
based on the parametric equations of their vertices in full 
perspective. The method assumes that the size of the po- 
lygonal object is known and that the camera is calibrated. 
Moreover, we assume that the problem of knowing which 
edge in the image corresponds to which edge of the po- 
lygonal or polyhedral object is solved. The next section 
explains how we formulate this model-based object loca- 
tion problem with parametric equations and direction 
cosines. 

2 Camera-Polygon System Modeling 

where f is the focal distance estimated with a camera cali- 
bration technique such as [2]. The known Euclidean length 
of a segment AB of the object is: 

This can be rewritten with parametric equations as follows: 

((2, + to . cos aa ) - (zh + th . cosah ))2 

equation: 
After factorization of t ,  and th , we obtain the following 

-(cod a. + cos' B, + cos' yo).  1,' 

-2. (cos a, . cosa, + cos B, .cos B, +cosy, . cosy,). t, . th 

+(COS' ah + cos2 Bh + cos' y,). ti 

+2[(xh -x,).cosa, +(y, -y,).cosB, + ( z ,  -z,)~cosy,l~t ,  

+2[(x, -x,).cosa, +(yo -y,).cosB, +(z,-zh)~cOsyhl~!, 

-AB'+(x, -x , ) '+ (~ ,  - y h ) ' + ( ~ ,  -2,)' = O  

This equations has the form 

Our goal is to find the distance and orientation between 
a polygonal object and the camera. In order to do this we withA1 and CI always equal to 1. This is the general quad- 
choose the camera coordinate system where it is more easy ratic equation of a conic. 
to establish the relationship &tween a 3D point and its 
projection. in this 3~ coordinate system, a A of a BY doing similarly for all external edges of the extracted 

polygonal object, can be represented with the parametric vertices and for their diagonals (see figure by Permuta- 

equations : tion, one can obtain a system of quadratic equations. 
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I 1,' + B;t;t,+, + f,+l' + D;f, + E,.t,+l + 6 = O  

r,,' + ~ , , . r , , . r ,  + t + ~ , . r ,  + ~ , , . t ,  + q, = O  

t12 + K, . t , . r3  + r,' + Ml . t l  + Nl . t3  + I: = O  

t,' + K;t;f, + t,' + M;f, + N;f, + I: = O  

I,,' + K,;t,;tyl + tZ2 + M,;t, + N,,.tT + 4 = O  

That can be noted: 
F(t,;..,t,)= F(T) = 0 

for simplicity. 

Figure 1 : Perspective projection of a polygonal object with 
five identified vertices and the corresponding external 
edges and diagonals. 

3 Preconditioned CG method for NL system 

In order to get the 3D object location in real time, we use 
the method of the Conjugated Gradient (CG) [3] to solve 
the quadratic system because it achieves rapid convergence 
and needs modest storage and computational resources. 
The CG method is probably the most powerful and reliable 
method in multidimensional optimization problem without 
constraint. 

The hc t ion  to be minimized is: 

G(T) = F(T)' . F(T) 

with VG(T)= - ... [: :J 

G (T) = 

We can initialize the CG algorithm with an approximate 
solution obtained by using the method of similar triangles : 

f 0  = f20 = ... = f 0  = f. (AB - ab) 
ab 

- ( t 1 2 + ~ I . t l . t 2 + t , 2 + ~ l . t l + ~ l ~ t 2 + q ) 2  
- 

(tn2 +B;t;t, +tI2 +D".f"+E,.tl +FJ2 

(ti2 + Kl .tl . f 3  +f32 +MI .tl +Nl . f3  +4)2 

_(tn2 + K, . t, . t2 + fZ2  + M" . t, + N" . t2 + p,)2 

Where AB is the 3D length of a nearly parallel (with the 
image plane) segment while ab is its 2D projection length. 
The number of iterations is limited empirically to 40 and 
we used two stopping criteria: 

Where E. was set to lo-''. We choose experimentally the 
Hestenes and Stiefel's version of the CG algorithm. The 
algorithm has the following form: 

{ 
A that minimizes G(T + A. d )  

It can be shown that the minimization of G(T + A. d) re- 
sults in searching for roots of a third degree polynomial 
that can be easily carried out with a dichotomy line- 
search algorithm. The essential particularity of the al- 
gorithm of Fletcher and Reeves is the term 

We noted fast convergence towards the solution in a few 
seconds (approximately 560 machine iterations for a crite- 
rion of E = lo-'. ThereaRer we have tested the two other 
formulas of the coefficient P: 

Convergence is much faster for the method of Polak and 
Ribitre than the method of Fletcher and Reeves (approxi- 
mately 90 machine iterations). With the Hestenes and 
Stiefel coefficient. we could solve our svstem in even less 
iterations (approximately 30 iterations for the same crite- 
rion of E = lo-'). 



4 Experimental result 

For the following experiments we use basic off the 
shelf equipments: a camera model TMC-6 Pulnix (U.S.A.) 
with a CCD matrix of 752x582 pixels, a Computar 1:1.2 
12mm (Japan) objective and a classical frame grabber run- 
ning on PC Plll 866Mhz, PC1 132Mhz and using DMA 
with 256Mo1133Mhz Dram. We tested the al~orithm on - 
distances ranging from 2 m to 10 m for a planar polygonal 
target. To help us to select landmarks we use the Canny- 
Deriche edge detector but this preprocessing is not neces- 
sarily needed. The intrinsic parameters of the camera were 
estimated by a method of camera calibration developed by 
our group [2]. Table 1 shows a comparison of the algo- 
rithm results with distances obtained with a laser system 
that has an accuracy of +I- 30rnm. The mean relative error 
between the distanEe to the center of the pIanar target ob- 
tained with the laser and the mean distance of 4 vertices is 
presented in Table 1. One can observe that the error in- 
creases with distance, mainly due to errors in the 
computation of the vertex positions in the image plane as 
the projection of the object gets smaller. 

Table 1 : mean relative errors. 

The CG algorithm with the Hestenes and Stiefel's coeffi- 
cient P "' associated to a vector initialization close to the 
solution allowed us to converge quickly to the solution in 
real time (t < 20 ms, E = lo-'(' ) . 

5 Conclusion and discussion 

The method can find a unique solution for n >= 5. For n = 
4. a unique solution is also found if the vertices are copla- 
nar (figure 2). 

For the particular case n = 3, there are 8 possible solutions 
(4 in fkont and 4 behind the camera) while obviously n = 1 
or 2 does not offer enough constraint to find a unique (or 
limited number of) solution (see figure 2). 

Figure 3: Ambiguity with n = 1,2 or 3. 

At first we used the Newton-Raphson's method to solve the 
minimization problem with little success. In fact, it is 
known that the Newton-Raphson's method does not always 
converge, or can converge to unwanted solutions. Moreo- 
ver, the needed resolution of a linear system (Jacobian 
inverse) at each (or few) iteration is costly and sometimes 
ill conditioned. Unfortunately for our system of quadratic 
equations, the method of Leuvenberg-Marquardt also di- 
verges or oscillates. Therefore we decided to rely on an 
optimization (CG) method that is simple, has a larger con- 
vergence domain and achieves rapid convergence with 
little storage and computational resources. 

Although the results are rather preliminary, they are very 
promising with errors that are mostly due to the edge de- 
tection of the polygonal object in the image. These errors 
increase with the ratio objectdistance/object-size as the 
object projection decreases. One interesting application we 
are currently working on, is the 3D real-time localization 
of road signs from a mobile vehicle with a monocular vi- 
sion system. 

Figure 2: Ambiguity with n = 4 when the vertices are not 
coplanar. All the lengths between vertices C and ABD are 
the same as for E and ABD. The bottom picture shows that 
the two solutions are possible. 
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