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ABSTRACT In this paper, we present an approach to incorporating 
partial geometric information into a local feature-based 

The distance-supported shape index is proposed for the 
representation to improve its ability to discriminate objects. 

recognition of three-dimensional (3-D) free-form objects. 
There have been efforts for encoding distance information 

It is constructed by incorporating extra global information 
from a designated origin to local features such as surface 

into the locally computed shape index (SI) [4,5]. The extra 
normals [8,9]. The novel aspect of our approach is that 

information is the distance to the local region from: ( I )  the 
two different types of distance information are applied 

object's center of mass and (2) the major axis of object 
depending on the object elongation. One is the radial 

elongation. The major axis is defined as the eigenvector 
distance to a local region from a designated origin and the 

corresponding to the largest eigenvalue of the covariance 
other is the axial distance from a designated axis. The 

matrix of 3-D object points. The cross entropy is used to 
object's center of mass serves as the reference origin. If an 

measure the similarity between the histograms of distance- 
object is found to have a distinct major axis of elongation 

supported Sls. Experimental results from real range 
after a principal component analysis (PCA), our investi- 

images show many instances of increased discriminating 
gation indicates that the information based on the distance 

power of the distance-supported SI compared to the S1. 
from the major axis is more effective in distinguishing 

1 .  INTRODUCTION between objects with similar local feature distributions. 
The presented scheme is generally applicable to most 

Recognition of 3-D objects has been a topic of active 
of the local invariant features such as local moments, 

research in computer vision, and various approaches to the 
curvatures and spherical harmonics [7]. However, we use 

representation of 3-D objects for recognition have been 
the shape index (SI) suggested in [4] since it is invariant to suggested [I]. Most of the representation schemes have 
both rotation and scale and its effectiveness has been well 

adopted some form of surface/volumetric models, or 
examined [4-61. 

local/global features such as surface normals, moments, 
The rest of the paper is organized as follows. Section 2 spherical harmonics, 3-D curves, splashes and shape 

indices [2-91. introduces two forms of distance-supported Sls and 
Section 3 discusses a strategy for employing When rotation- and scale-invariant local shape features 
representations based on the distance-based SIs and 

are computed in many parts of an object, the simplest way 
histogram matching. In Sections 4 and 5, experimental of utilizing the information would be to use only their 
results and conclusions are presented, respectively. distribution for recognition without establishing explicit 

geometric relations of the features within the obiect. It has 2. DlSTANCE SUPPORT FOR SHAPE INDEX 
been demonstrated that this is an efficient and effective 

The SI is a quantitative measure of curvatured local shape 
way of representing arbitrary free-from objects [5]. It has 

and can be computed using principal curvatures. It was also been shown that the use of local features alone is 
introduced by Koenderink and van Doom [4] and robust to partial occlusions [6]. Despite its efficiency and 

robustness to occlusions, however, the lack of geometric modified by Dorai and Jain [5] as: 

relations between the local features degrades its I 1 I K I ( P ) +  K ? ( P )  S, (11) = - - -tan- 
discriminating power substantially. 

( 1 )  
2 x K , ( P ) - K ? ( P ) '  

Full geometric matching, on the other hand, requires 
where KI and K? denote the principal curvatures around the feature correspondences and is therefore computation 

intensive. It is not in general tolerant for partla1 occlusions. point p and K)>K?. The SI as defined in Equation ( I  ) has 
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the range [0,1], and every distinct surface shape 
corresponds to a unique value of SI. An exception is that 
planar surfaces are not defined in Equation (1) since both 
the principal curvatures are equal to zero. Hence, they are 
mapped to the value of 0.5 which happens to be the SI 
value of  saddle shapes. The SI is invariant to rotation, 
translation and scale, and the I-D histogram Hs(SI) 
computed with all the surface points, can be used for 
matching. We augment the shape representation by adding 
distance information fiom a designated center or axis in 
the object space. 

It has been shown that encoding of distance 
information can increase the ability to disambiguate 
objects that have similar surface normal distributions [8,9]. 
We combine the radial distance from the object center d, 
with the shape index SI. The addition of this information 
results in a 2-D histogram HR(SI, 4). T o  maintain the scale 
invariance of  Sl, the magnitude of the range data points are 
normalized with respect to the maximum radial distance. 
In other words, for the data points x,=[.u, y,, z , , , ]~(I  i m l / l / f )  
tlie mean is computed as: 

and the data points are unbiased and normalized as: 

when the radial feature distances are computed. 
When an object is substantially elongated, the 

principal axis of elongation is stably defined from object 
points and we use the axial distance from the principal axis 
as another source of geometric information for recognition. 
Tlie principal axis can be computed from PCA with the 
covariance matrix: 

where A=[pl  p? . . . p,,,]. From C e  = h, three eigenvalues 

A , ,  /i2 and A3 (/11>A2>/3J) and three eigenvectors e l ,  e2 and 
el are obtained, and the eigenvector e l  corresponding to /II 
is the major axis of object elongation and thus taken as the 
reference axis. Tlie addition of the information from the 
axial distance from el, results in another 2-D histogram 
H.,(Sl. d,,). Since the data points are normalized and the 
major axis captures the object orientation, both HR(SI, (/,-) 
and H,!(S,. (I,,) are rotation and scale invariant. Fig. 1 
illustrates the distances (1,. and d,, in tlie 3-D object space. 

We can possibly use more tlian one axial distance 
based on tlie three axes computed by PCA. In principle, 
the three axial distances from e, .  e- and el would 
completely define a 7-D object geometlically. However, 
although there is a large class of objects \\it11 the dominant 
major asis. the second and the third ases are indistinctly 
defined for most of tlie common objects and the practical 
utility ill  sing more tlian one axial dlstarice is quite 
limited. 

Fig. 1 .  Distances from object center and major axis. 

3. OBJECT REPRESENTATION AND MATCHING 

A 3-D object can be represented by one of the two 2-D 
distance-supported SI histograms HR(SI, (I,) and H,(SI, d,,) 
since the 2-D histograms contain the information about the 
I -D SI histogram HdSI). For an elongated object, both HR 
and H,, can be used for matching. However, our 
experimental studies presented in Section 4 suggest that 
H ,  is generally more effective than HR for elongated 
objects, and therefore only HA can be reserved when r-A 
=A2//i1 is sufficiently low. The extra parameter r . ~  guides 
initial indexing by determining the type of the histograms 
for subsequent matching. The object pose can be 
determined in a similar fashion to that in [ 5 ] .  

When HR(SI, d?) and HA(Sl, (I,,) are constructed with the 
same number of histogram bins as that for H,5{SI) to keep 
the computational load comparable, HR and H., carry only 
crude information about Hs(Sl) due to the coarse 
quantization in the SI direction. For instance, when tlie 
number of bins for Hs is 100, that for HR should be 1 Ox 10 
for the same size and computational cost for matching. 
Even in this case, our experimental studies show that HR 
and H, have more discriminating power than H, in most 
cases, hence it is not necessary to keep Hs in an object's 
representation. 

Histogram matching has been used for some object 
indexing and recognition approaches and a few matching 
methods have been suggested, such as histogram 
intersection, the 2 test and probabilistic matching [ lo ] .  In 
the work presented in this paper. we use the cross entropy 
as a measure of similarity [I I].  

The cross entropy C(Q,P) of two 2-D histograms Q and 
P is defined as  

The symmetric cross entropy (C(P.Q)+C'(Q.P))'Z is 
actually used for measuring similarity in our e\perilnents. 

Experiments are pel-formed to in\est~gatt: tlie 
effecti\,eness of the SI and tlie proposed d~stance- 



supported representations. Figs. 2 and 3 show the range 
images (available at http://sampl.eng.ohio-state.edu/ 
-sampl/data/3DDB/index. html) used in our experiments. 
The range images in Fig.2 are from the same object but 
with different pose and scale. The objects in Figs. 2 (b), 
(c), and (d) are rotated from the object in Fig. 2 (a) by 20 
degrees about the x, y, and z axes, respectively. The range 
image in Fig. 2 (e) is scaled version of that in Fig. 2 (a). 
The objects shown in Fig. 3 are all different from that in 
Fig. 2 and from each other. 

Fig. 4 (a) and (b) show the SI histograms from the 
range images in Figs. 2 and 3, respectively. The number 
of histogram bins is I00 for both Fig. 4 (a) and (b). All 
the SI histograms in Fig. 4 (a) are similar since they are 
from the same object and the SI is rotation and scale 
invariant. Since the objects shown in Fig. 3 mainly have 
ridge and dome surfaces while the object in Fig. 2 
consists mostly of ridge and rut surfaces, all the SI 
histograms in Fig 4. (b) are substantially different from 
those in Fig. 4 (a). However, those in Fig. 4 (b) are quite 
similar to each other despite the fact that they are from 
different objects that look substantially dissimilar. 
Therefore, the SIs are not effective for distinguishing 
them. This is demonstrated in Table I where the cross 
entropy values between the SI histograms H.dSl)s for 
intra-distances (between the same object with different 
pose or scale) and those for inter-distances (different 
objects). As seen in Table I, the inter-distances between 
the objects in Fig. 3 are not much higher than the inter- 
distances between the same objects in Fig. 2. For higher 
discriminating power, it is desirable to have bigger 
differences between the intra- and inter-distances. 

Table 11 (a) and (b) show the intra- and inter- 
distances but with the distance-supported SI histograms 
HR(Sl, 4 ) s  and HA(Sl, d,,)s. The total number of bins for 
these I l x l l 2-D histograms is 12 1 and is comparable to 
that of H.dSl). It can be seen that while the intra-distances 
increase marginally from HS(S1)s to HR(Sl, dr)s and H.,(SI, 
d,,)~. the rates of increase for inter-distances are 
substantially higher for the inter-distances. This means 
that the different objects are much better distinguishable 
based on HR(S,, (I,) and H,(S,, d,,) than on H.dSl). It should 
be noted that all the objects in Figs. 2 and 3 are highly 
elongated and the inter-distance cross entropy values from 
H,,(SI. tl,,) are considerably larger than those from HR(Sl, 
dr). 

5. CONCLliSlONS AND FUTURE WORK 

This paper presents a new method for incorporating partial 
infotmation about global geometry into a local feature- 
based shape representation. The global information is 
provided in the fol-m of local featul-e's radial distance from 
the object's center and axial distance from the major axis 
of obiect elongation. Our investigation suggests that the 
distance-supported shape index have a greater degree of 

discriminating power for recognition than shape index 
alone. It also shows that the axial distance-supported shape 
index is more effective than the radial distance-supported 
shape index for distinguishing elongated objects. 

We are interested in investigating the effectiveness of 
the distance-supported shape index for recognizing objects 
with partial occlusions. Our preliminary study suggests 
that the distance-supported shape index is almost as 
tolerant for partial occlusions as the shape index. 
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Flg. 2. Same Images (original and transformed images) 
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(a) H5(Sl) h~stograms of the objects In Flg. 2 (b) HdSl) histograms of the objects in Fig. 3 
Flg 4. SI h~stograms of the objects in Flgs 2 and 3 

Table I .  Cross entropy between SI histograms ( x  102)  

Table 11. Cross entropy between the histograms HR(S,. dr)s and H4(Sl, rl,,)s (x103) 




