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Abstract

Human skin color is a powerful fundamental cue that
can be used in particular, at an early stage, for the
important applications of face and hand detection in color
images [1] [2], and ultimately, for meaningful human-
computer interactions. In this paper, we analyze the
distribution of human skin for a large number of
chrominance spaces and for skin images recorded with
two different camera systems. By use of seven different
criteria, we show that mainly the normalized r-g and CIE-
Xy spaces, or a space constructed with a suitable linear
combination of normalized r, g and b values, are the most
efficient for skin color-based image segmentation. In
particular, they allow the use of a simple, single Gaussian
skin chrominance model, and they yield the most robust
skin distribution to a change of camera system.

1. Introduction

Image segmentation based on skin color (or skin pixel
detection) is relatively robust to changes in illumination,
in viewpoint, in scale, to shading, partial occlusions and to
cluttered backgrounds as compared to the segmentation of
gray-level images. Robustness of segmentation is
generally achieved by separating the chrominance from
the luminance in the original RGB color image, and by
using only the chrominance for segmentation. This
separation implies a dimensionality reduction by a
suitable, linear or non-linear transformation from the 3-D
RGB color space mto a 2-D chrominance space. One
important issue is the selection of an efficient
chrominance space, which motivates an analysis of human
skin color for different chrominance spaces: the
performance of face and hand detection depends critically
on the performance of segmentation, which in tum
ultimately depends on the chrominance space that is used.
In particular, for a given set of skin sample images or
sample pixels that is collected for calibration before
applying the segmentation, the space that is selected
determines the shape of the skin chrominance distribution,
which in tum determines the complexity of the skin
chrominance model that is required in order to obtain a
high quality of segmentation. The skin chrominance
distribution also depends on the various skin groups that
are considered (Asians, Caucasians, dark skin groups), the
illumination conditions under which the color images
were recorded, and on the camera system that is used to
record the images. Finally, an important criterion that
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ultimately limits the quality of segmentation or of skin
pixel detection is the degree of overlap, or discrimination,
between the skin distribution and a distribution of “non-
skin” pixels in a given chrominance space, which depends
to some extent on the number of skin and non-skin pixels
that are collected for calibration. To our knowledge, no in-
depth comparative study of the efficiency of a large set of
different chrominance spaces for skin color-based image
segmentation has been performed, although we recently
presented preliminary results for a relatively limited
number of spaces [3].

In this paper, we analyze the distnibution of human skin
for a large set of 25 different color spaces (41
chrominance spaces), for facial skin images recorded with
two different camera systems, and in terms of seven
different criteria. The color spaces considered here that
result from a linear transformation from the RGB space
are the [;1:l5 (Ohta’s optimized color features [4]), hyhshs
(Wesolkowski's color space [5]), YCb,Cr, (using the CIE
standard illuminant C) and YCb.Cr, (using the CIE
standard illuminant D65) [6] [7], YES (a standard space
developed by the Xerox company), YIQ and YUV spaces.
The color spaces that result from a non-linear
transformation form a second group, that 1s divided into 4
sub-groups: the normalized color spaces (r-g-b [8] [9],
CIE-xyz [8] [9] for both standard C and D65 illuminants,
and TSL [10]), the perceptually plausible color spaces
(CIE-DSH [8], HSV and HSL [11]), the perceptually
uniform color spaces (CIE-L*u*v* [8], CIE-L*a*b* (8],
and Famsworth’s F-uv space [8] [12], for both standard C
and D65 illuminants), and other color spaces (C;C-Cs,
liLls, and 1,°12]ly7 proposed as color invariants and used
for viewpoint-invariant image retrieval and for color-
based object recognition by Smeulders and Gevers in [13]
[14], rg and rgb log-opponent space applied to color
image indexing by Berens and Finlayson in [15], a’-b’
space applied to the extraction of skin color areas in facial
images by Kawato and Ohya in [16], mod-rgb space
proposed by Tominaga in [17], P,P, space used for the
construction of the Fourier spectrum of the chromaticity
by Vertan er o/ in [18], and (R/G, R/B, G/B) and Yuv
spaces). The conversions from the RGB space for both
groups are shown in Tables 1-5. These Tables also show
the boundanes of each space, as well as the dimensions
used to calculate the discrete skin chrominance histogram
for each space. For all chrominance spaces considered in
this paper, the histogram dimensions are selected such that
the histogram resolution is the same for all spaces, in
order to ensure a valid comparative study.
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Table 5. Non-linear conversions from RGB color space
into other color spaces.
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Two separate sets of sample images used for the skin
chrominance analysis are recorded with an inexpensive
SGI camera, and with a high-quality SONY DXC-9000
camera system respectively. The seven criteria used for
the analysis for each space are: 1) the robustness of the
skin chrominance distribution with respect to the intrinsic
variability of skin color (to three different skin groups), 2)
its compactness, 3) its shape, 4) the degree of
discrimination (or the overlap) between the skin and non-
skin distributions, 5) the robustness (or “portability™) of
the skin distribution to a change of camera system, 6) the
relative robustness of the skin distribution to changes in
illumination conditions, and finally, 7) the computational
cost of the transformation from the 24-bit RGB (NTSC)
space into a given chrominance space.

2. Parameters used for the Skin Chrominance
Analysis

We first define three different parameters that we use to
perform a quantitative analysis of the skin chrominance.
1) The Kullback-Leibler Divergence (KLD) [3] 1s selected
to estimate the goodness of fit of the skin chrominance
distribution to a simple, single elliptical Gaussian. It 1s
defined in the discrete case as
G's

N M S
KLD = ghzlsij ]n(a;lli-] +
where S§'; 1s considered as the “true” distnbution (the
normalized skin histogram observed in a discrete
chrominance space with M x N bins) and G as the
“estimated” or “model” distribution (the normalized ideal
Gaussian histogram calculated from the mean vector and
from the covariance matrix of the skin distribution in the
same discrete space). The KLD has the following
properties: 1) KLD 2 0 and ii) if KLD=0, then S';; = G%; .
Hence, the lower the value of the KLD, the higher the
goodness of fit to the single Gaussian model.
2) The Normahzed Histogram Intersection (HIN) is a
measure  of the overlap between two different
distributions, such as the skin and non-skin distributions.
In the discrete case, 1t is defined as:

N M
HIN = Z Z min ( S% , NS%)
= =

S 36y

=1 i=1

(2)
N M

where Ns'j = NS; / Z Ns; 1s the nommalized non-skin
T =

histogram calculated in the same discrete chrominance
space as S'j, with M x N bins. The lower the value of the
HIN, the higher the degree of discrimination between the
two distributions.
3) The global shift S of a distribution can be calculated as:
S= '{m“ - mx3)3+ (my; - myg)" (3)
where my=(myg, my2) and my=(my;, my2) are the
mean vectors for the skin distributions in a given
chrominance space (X, v) for cameras | and 2.

3. Skin Chrominance Analysis

3.1 Experimental set-up

Images of Asian and Caucasian subjects, and of
subjects with dark skin color, were recorded under slowly
varying illumination conditions in an office environment
with both the SONY and the SGI camera systems. From
the images obtained with the SONY camera, 65, 51 and
10 skin sample images of Asian, Caucasian, and dark
skin-colored  subjects respectively, were manually
selected, yielding a total of  2.115x10E+05,
1.630x10E+05, and 2.580x10E+04 skin pixels for each
respective skin group. When using the SGI camera, 111
skin sample images of both Asian and Caucasian subjects
were manually selected, for a total of 1.515x10E+05 skin
pixels. Also, 80 “non-skin” images were selected from
various sources, mainly from the World Wide Web,
producing a total of 2.6606x10E+06 non-skin pixels. For
each image, the 24-bit RGB values are scaled between 0.0
and 1.0. Achromatic pixels (including black) were
assigned suitable values adapted to the particular color
space that is considered, as shown in Tables 1-5. For each



space vielding negative chrominance values, a shift was
performed so that all values are positive, without any
influence on the results of the chrominance analysis.
Generally, the discrete, cumulative skin and non-skin
histograms are calculated over an entire space, except for
the CIE-L*u*v and CIE-L*a*b* spaces, whose
boundaries are curved, and for the log-opponent and
RiR->R1 spaces, where the range (hence the histogram
dimensions) 1s determined empincally, by observing the
skin and non-skin distributions (we used a range of [-1.0;
2.0] along both the x and y axes for the log-opponent
space, and of [0.0.2.0] for the R,;R>R: space). The
resolution of the skin and non-skin histograms 1s 0.01 unit
for all spaces, except for the CIE-L*u*v* and CIE-
L*a*b* spaces, where the resolution is 1.0 unit.

3.2 Robustness to the intrinsic variability of skin

color and compactness of the skin distribution

As an example, Figure | shows the skin distribution
separately for each of the three classes of subjects for the
r-g, CIE-xy and H-S (HSV) spaces with the SONY
camera, Table 6 shows the KLD and the HIN for the three
skin groups for all spaces, when using the SONY camera
Table 7 shows, for each space and for both cameras, the
area of the skin distnbution relative to the area of the
gamut of possible colors (owing to the particular
boundanies of the CIE-L*u*v*, CIE-L*a*b*, r.g-rgb and
R|R-R; spaces, the area for these spaces is not shown).
The gamut in all spaces with rectangular boundanes,
except in the CIE-DSH, HSV and HSL spaces, fills only a
part of the entire space defined by the space boundaries,
and its geometry depends on the space that 1s considered,
as Figure 2 1llustrates by use of the non-skin distributions
for a selected number of different spaces. The normalized
CIE-xy and r-g spaces, as well as the a’-b’, mod-gb and
P,-P, spaces vield the most robust distributions with
respect to the intrinsic vanability of skin color, because:
1) the KLD 1s consistently lower across the three skin
groups than for the other spaces, and 2) the overlap
between the skin groups varies typically within a
relatively narrow range, between 45% and 64% for most
spaces. The Llls, 1’1’7 and C,-C; spaces vield the
highest overlap, indicative of a higher robustness, but this
advantage is offset by the large overlap between the skin
and non-skin distributions in those spaces, as shown in
Subsection 3.4. In almost all chrominance spaces, the
distribution for the Asian subjects, who have an

intermediate skin color, is the most compact, in terms of

the relative area of the distribution, in particular in the r-g,
CIE-xy, C;-C,, Py-P5, a’-b" and mod-rgb spaces.
3.3 Shape of the skin distribution

A few representative examples of the cumulative
distribution for the Asian + Caucasian subjects, obtained
with both cameras, are shown in Figure 3, for the r-g,
CIE-xy, E-S and CIE-u*v* chrominance spaces. Visually,
the skin distnibution in the normalized spaces fits well to
the single Gaussian model, whereas in the un-normalized
spaces, its shape is generally complex and cannot be
described well by a simple model. Table 8 shows the KLD
for all the chrominance spaces and for both cameras.
Since the KLD is consistently lowest for the normalized
CIE-xy and r-g spaces, together with the C,-C;, a’-b’,

(c) Dark skin color

. e g
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(I))~ Ca ucasians

r-g chrominance space

ClE-x\ r.hmmmanu- space_

| e 1 et A

&1“‘

H S chrominance \pQw (HSV color space)

Figure 1. 2-D top view of the cumulative histograms in the
normalized r-g (top), CIE-xy (middle) chrominance spaces
and in the H-S (HSV) space (bottom) of skin sample images
of (a) Asian, (b) Caucasian subjects, and (c) of subjects with
dark skin color, recorded with the SONY camera. Here, only
the relevant part of the histogram is shown.

Ch1-Crl rg  ClExy(C) TS(TSL) F-uv (O)
1t -y a-b' mgmb PP,

Figure 2. 2-D top view of the cumulative histograms in
several selected chrominance spaces of 80 non-skin sample
images collected from various sources.

CIE-u*v*
2-D top view of the cumulative histograms in the
r-g, CIE-xy, E-S (YES) and CIE-u*v* chrominance spaces of
skin sample images of Asian + Caucasian subjects recorded
with the SONY camera (left column) and with the SGI
camera (right column).

Figure 3.



Table 6. KLD and HIN for three different skin groups
(Asians (A), Caucasians (C) and subjects with dark skin
color (D) ), for 41 chrominance spaces and with the SONY

camera.
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mg-mb and PP, spaces, the skin distribution in those
spaces can be modeled by a single Gaussian.

3.4 Discrimination between skin and non-skin
distributions

Table 8 shows the HIN for Asian + Caucasian subjects,
for all the chrominance spaces and for both camera
systems. For both camera systems, the overlap between
the skin and non-skin distributions is lowest for the r-g,
CIE-xy, TSL, CIE-DSH, HSV, CIE-L*u*v*, CIE-L*a*b*,
C;-Cs, rg-rgb (In-chroma), a’-b’, mod-rgb, P;P, and
RiR:R; spaces. Hence, the discrimination capabilities
between skin pixels and non-skin pixels are highest in
these spaces. The lowest discrimination is found for the
111313 and |.| ‘]:.]\1‘ spaces.
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Table 7. Area of the skin distributions for the three different
skin groups relative to the area of the gamut of all possible
colors in a given color space, for both camera systems.
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548 55,484 53.871 | 60.000 |65.507 |

830
10.370| 9.423
3.489 | 6.685 [10.008| 7.550
14.311|14.337
10.122| 9.7

PiP2 12991 | 7.979 | 8.7

2.283119.901/

3.5 Robustness to a change of camera system

83.774
13.764
11.752
19.430
12.270
11.571
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The robustness to a change of camera system can be
measured as the change in the KLD, in the HIN and the
global shift S of the distribution. As seen from Table 8,
the change in the KLD is lowest for the r-g, CIE-xy, C,-
Cs, a’-b’, mod-rgb and PP, spaces, while the overlap of
the skin distributions between the two camera systems
(HIN skin SONY/SGI) is intermediate to low for those
spaces. The highest overlap 1s found for the 1;l.l;, and
11’12’15 but, as for the overlap between the three different
skin groups, for those spaces this advantage is offset by a
significant overlap between the skin and non-skin
distributions, and also by very large values of the KLD for
both cameras. The global shift S of the distribution 1s low
to lowest for the above-mentioned 6 color spaces, and 1s
also low for some of the spaces resulting from a linear
transformation from RGB space.

3.6 Robustness to changes in illumination
conditions and computational cost of the color
space transformation

Finally, it is well known that a normalization of RGB
values by (R+G+B) or of CIE-XYZ values by (X+Y+Z)



reduces the most the sensitivity of the skin distribution to
changes in illumination, and a linear transformation from
the RGB space, or a non-linear conversion into the
normalized rgb coordinates and into the CIE-xyz space is
not computationally intensive compared to that into other
spaces. The mod-rgb space also provides a suitable
normalization.

4. Conclusions

In conclusion, overall, in terms of seven different
critena, the normalized r-g and CIE-xy chrominance
spaces, or spaces such as the a’-b” and PP, spaces that are
constructed as a linear combination of normalized r, g and
b values, offer the best tradeoff and appear consistently to
be the most efficient for skin color-based image
segmentation. In particular, the use of these normalized
spaces obviates the necessity to apply a complex and
computationally intensive skin chrominance model n
order to obtain a high quality of segmentation, as is the
case with most un-normalized spaces, in which the skin
distribution is complex-shaped. The C,-Cj5 space, the mod-
rgb space that also results from a suitable normalization,
and to a lesser extent the RyR;R; space, are also good
candidates. Owing to their particular geometry, the 1115
and 1,'1;’]5" spaces are the least efficient for the specific
problem of image segmentation based on skin color.
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