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Abstract 

This paper presents a new approach to shape 
and motion estimation based on geometric primi- 
tives and relations in a model-based framework. A 
description of a scene in terms of structured geomet- 
ric elements sharing relationships allows to  derive a 
parametric model with Euclidian constraints, and a 
camera model is also proposed to reduce the prob- 
lem dimensionality. It  leads to  a sequential MAP 
estimation, that gives accurate and comprehensible 
results on real images. 

1 Introduction 

The problem of recovering geometric informa- 
tion about the 3D world from streams of images 
has been proved to  be solvable by various means 
112, 13, 14, 8, 4, 51, but few practical solutions have 
been carried out. Depending on the applicative field, 
some approaches may give unsatisfactory results or 
rely on unadapted hypotheses. 

In video post-production (our primary applica- 
tion), fast and precise algorithms for motion track- 
ing, camera motion recovery and 3D reconstruction 
are important tools for tasks such as special effects 
generation and augmented reality. Here, the visual 
quality of the result and the ease of use are the prin- 
cipal goals. Real-time computation is not needed, 
and an operator can feed the algorithm with a pri- 
o r i  knowledge of the scene described in the images. 

The method proposed here uses geometric prim- - - - 
itives namely line segments, rectangles and trihe- 
dral corners as base features. Geometric relation- 
ships of orthogonality, parallelism, collinearity and 
coplanarity are also specified between the primitives. 
Most algorithms for 3D shape and motion estimation 
are based on feature points or lines. Complete 3D 
models have also been investigated 16, 101, but there 
has not been much work on using such intermediary 

features or geometric relationships between distinct 
objects. 

The primitives of interest are interactively defined 
by the user on a first key frame, then tracked along 
the image sequence. Specified geometric relation- 
ships are integrated by a reduction algorithm in a 
parametric model of the 3D scene, and the camera 
path is also modelled by motion parameters. Finally, 
the maximum-a-posteriori estimator of the param- 
eters is obtained, and a frame-by-frame non-linear 
optimisation process allows to compute it efficiently. 
We present an example of tracking, modelling and 
reconstruction from real images and finally discuss 
remaining error sources and possible improvements. 

2 Primitive Tracking 

Geometric primitives are our base features. Their 
use allows more precise and robust tracking than 
points, by feeding explicit geometric information 
into the process. Our tracking algorithm extends 
basic methods of point correlation trackers with a 
robust edge matching technique, and also makes ex- 
plicit use of 3D-perspective models, whenever possi- 
ble, to better fit the observed deformations of pro- 
jected objects (cf [3] for further details). 

The algorithm outputs stable primitive 
tracks upon long image sequences (cf fig.l), 
{Ytt)i=O..~,t=~..~, where Kt are the image coor- 
dinates of the primitive i on the frame t. The 
dimension of Yjt depends on the primitive type. 
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Along the sequence, there are possible undefined 
positions due to loss of track, occlusion or motion 
out of the camera field. Moreover, each kind of prim- 
itive model leads to different noise on positions, and 
the tracking quality score issued by the algorithm is 
also available. To use all this information, an inverse 
variance matrix v;' is associated to the primitive 
tracks. The matrix coefficients are weighted by the 
quality score or set to  zero when the primitive is 
lost, and variance ellispes are oriented along primi- 
tive edges. 

3 Geometric Scene Reduction 

Following the tracking process, geometric rela- 
tions between primitives are introduced. The possi- 
ble relations are parallelism, orthogonality, collinear- 
ity and coplanarity, which are general for any OD, 1D 
and 2D primitives. These constraints, along with in- 
ner constraints of specific primitives like rectangles 
or corners, make the raw description of the scene in 
terms of points or separate shapes over-determined. 
To cope with it, the use of a constraint solver [ll] 
along with linearised constrained minimisation or 
constraint space-projected minimisation [7] would 
be far from optimality and the knowledge from re- 
lations would remain under-used. 

A better approach consists in searching for a para- 
metric representation that directly merges the rela- 
tions within a reduced set of parameters. To per- 
form this geometric reduction, algebraic reduction 
methods and regular rewriting systems are not well 
adapted [I]. 

We created a specific geometric reduction algo- 
rithm to derive the minimal set of unconstrained 
parameters from the initial points and their rela- 
tionships (cf [2] for further details). This reduction 
is possible with any set of primitives and relations, 
and transforms the geometric scene into a model 
with as many dimensions as there are degrees of 
freedom in the system. This reduced model enforces 
all relations, reduces the search space by several di- 
mensions, and separates the highly correlated scene 
points into low-correlation parameters. 

Moreover, the transform procedure can be inter- 
preted as a regular function, and its derivatives can 
be computed analytically. If we set {Xi) as the 3D 
point coordinates of the projected primitives {Kt), 
we perform a reduction process that constructs the 
functions Xi = Xi(Ps) for all i, where Ps are the 
reduced scene parameters. 

4 Camera Modelling 

Once we have a geometric model of the scene, 
we must apply a projection and motion model for 

the camera. We use a pinhole camera model, that 
performs the following projection for a 3D point P :  

The center of projection ("0, vo) and the aspect ratio 
r are supposed known by the user and fixed. The 
focal length f can be fixed or moving, and a relevant 
approximation of its value is supposed known. The 
remaining parameters are the translation vector T 
and the rotation matrix R, that change with the 
camera motion. 

For each frame t,  the translation vector Tt, the 
three pose angles Ot that determine the rotation 
Rt = R(Ot) and possibly the focal length ft  are 
the motion primary parameters. In a model-based 
framework, such parameters provide too many de- 
grees of freedom on the motion. As the camera mo- 
tion is continuous and rather smooth, a parametric 
model must be used to reduce the number of free 
motion parameters. To do this, we use Chebyshev 
polynomials to model the motion and pose curves: 

where Pk(t)  is the Chebyshev polynomial of degree 
k. Therefore, the motion parameters become PM = 
{ak, bk ,  ck ), reducing the degrees of freedom from 
7T to  7 ( K  + 1) parameters. The degree K of the 
polynomials is a hyper-parameter of the problem, 
that must be set arbitrarily by the user. 

5 Parametric Estimation 

The modelling of the scene and the camera leads 
to a non-linear parametric model, which embodies 
our prior geometric knowledge of the scene. The 
only statistical knowledge available a prion' is the 
model of the tracking errors, that are assumed to 
be Gaussian perturbations. Following the statisti- 
cal theory of Kanatani [9], we derive a maximum- 
a-posteriori (MAP) estimation in a Bayesian view- 
point: 

where P = {Ps, PM) is the shape/motion parameter 
vector and M is the prior modelling knowledge. 

If we suppose the measurement noise to be Gaus- 
sian with variance Vit from the tracking, we have: 



where Pi t(p)  is the projection of the primitive 6 Results and Discussion 
x ~ ( P ~ )  on the frame t. With no a priori assump- 
tions on the parameters P ,  we can set p(P1M) as The complete algorithm has been tested on vari- 
a fixed constant, to finally derive a weighted least- ous video sequences1 with different kinds of camera 
square estimator: motion, giving low residual errors as well as an ac- 

ceptable reconstructed shape (cf fig.3). The camera 
N T 

P = arg min C C  it - Pit ( p ) ) ~ , '  (Kt - f i t  (P)) 

Since the modelling functions fi',t(P) are non- 
linear, an iterative optimisation algorithm is needed 
to perform the minimisation. We use the Levenberg- 
Marquardt algorithm (151, which is particularly 
adapted to least-square forms and has fast conver- 
gence even with non-linear functions. It needs the 
computation of gradients, that are analytically ob- 
tained in the reduction step, and a good first esti- 
mate of the parameters, that can be hard to provide. 

To overcome the first estimate problem, we pro- 
ceed in a frame-by-frame basis. A Bayesian formula 
states that: 

p(pI{Yit}t=~..T, M )  CI Figure 3: Reconstruction for the praxitele sequence: 
top-left: front view, top-right: near camera view, 

~ ~ p ( ~ ~ { & t } t = o , , ~ - l ,  P( Yit t = o . . ~ - l l P M )  M )  bottom: side view. The black thick line is the cam- 
era path in the view. 

Thus, if we take the negative log of the formula, with 
our Gaussian assumption, the function to minimise 
a t  the frame T is the sum of the function already motion is realistic and free of the jittering effects of- 

minimised at frame T - 1 and the least square er- ten observed in unconstrained motion recovery (cf 

ror on the new data at frame T ,  so .iT-1 is an ef- fig.4). The estimated shape and motion are both 

ficient first guess for PT. An initial guess for the 
parameters must be computed for T = 0, when 
there is no camera motion: the scene can be derived 
from an arbitrary flat reconstruction of the pro- 
jected points (cf fig.2). The initial parameters are 

. . . . ,..- I 
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, 
I Figure 4: Camera estimate for the praxitele se- 

camera 
quence: left: motion, right: pose. The camera real 

- _ image plane -2~... . I 
motion was a panoramic-like rotation around a ver- 

- .  --..-A 
initial 3D coordinates tical axis, and the direction of view is along the Z 

axis. 

Figure 2: The flat reconstruction from first frame. 

Euclidian, and allow direct integration of virtual el- 
ements in the scene (cf fig.5). Computation times 

computed in the reduction step from these points, are acceptable: in the praxitele example, the track- 
then the Levenberg-Marquardt minimisation is per- ing step needed 12 minutes 30, the reduction step 
formed. This method avoids the computation of a 30 milliseconds and the estimation step 7 minutes, 
complex initial solution and increases the minimisa- with 19 primitives in 30 frames. 
tion complexity gradually as the number of frames 'additional results are available at:  
increases. http://www.multimania.com/piloubaz/research.htm. 
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Figure 5: The praxitele sequence with virtual ele- 
ments added: frames 1 and 30. 

The remaining errors and shape distortion prob- 
lems depend on three main factors. First, there exist 
many possibilities for the underlying shape and mo- 
tion when the visual motion and the primitives are 
simple. These possibilities are augmented with the 
noise on tracked primitives. Next, the only met- 
ric informations present in the model are the copla- 
narity and collinearity relations, so that distortions 
on distances and dimensions can still accommodate 
for the noise. Finally, the camera model depends on 
a unique hyper-parameter K arbitrarily set, regard- 
less of the effective motion. 

The first two factors can be handled by improve- 
ments in the tracking algorithm to reduce noise or 
characterise it more accurately. Adding primitive 
length information should also input more dimen- 
sional constraints and reduce the number of equiva- 
lent solutions, as would do more complex primitives 
than segments. 

The camera model has to be improved to better 
fit the real motion. Model-selection methods can be 
used in frame-by-frame basis, and remove the hyper- 
parameter problem. The set of models to choose 
from should also be more flexible. 

7 Concluding Remarks 

An algorithm for shape and motion estimation 
from geometric primitives has been presented. We 
have shown that the introduction of geometric rela- 
tions and motion smoothness in a model-based strat- 
egy offers realistic results and lower the motion er- 
rors in an optimal way. Reconstructed shape and 
motion are both structured, and almost free of noise 
in various real video streams experiments. 
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