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Abstract 

A method is described for fusing the results of dif- 
ferent feature detection algorithms in order to segment 
regions in C T  (computed tomography) images. While 
many feature detectors are available, each has its own 
characteristics strengths and weaknesses. In this work 
we aim to anticipate the complementary nature of such 
detectors, and so exploit strengths and tolerate weak- 
nesses in each. To achieve this, the system is initially 
trained, so that the expected responses from each fea- 
ture detector can be determined. A likelihood function 
then provides a combined measure of the similarity of 
each image pixel to the target region of interest and to 
the background region. This provides a means to seg- 
ment the region of interest from the background using 
all information provided by the detectors. During seg- 
mentation, constraints are applied so that the shape of 
the extracted region closely resembles the anticipated 
appearance of the target region of interest. 

1. Introduction 

A new technique for automatically segmenting fea- 
tures of clinical interest in medical CT (computed to- 
mography) images is described. A difficulty with this 
task is that there is usually very low contrast between 
the organs, which are of interest to clinicians, and other 
areas of such as bone and soft tissue which comprise 
the background. There is also variation in organ shape 
between different patients, and in most instances there 
is a degree of uncertainty in the exact position of the 
boundary. In fact, tests show that the manual segmen- 
tation of such regions by clinicians often varies con- 
siderably, showing that there is much subjectivity in 
the task. The approach described here, instead of re- 
lying on a single specialised segmentation algorithm, 
fuses the output of one or more very simple pixel level 

classifiers, and combines this with structural informa- 
tion concerning the anticipated shape of the target re- 
gion. Therefore with this approach we are not relying 
on highly accurate results from each feature classifier. 
Rather we aim to exploit the joint results that they 
provide, even though on their own these results may 
not be very good. The emphasis is therefore on error 
anticipation and tolerance, rather than on error free 
performance. 

The classifiers that we consider here provide any 
pixel level discrimination between the target region and 
the background. The system must initially be trained 
t o  recognise the expected responses of each of the classi- 
fiers in the two separate regions. This is achieved with a 
set of training images in which the regions correspond- 
ing to the target object and the background have been 
manually identified. The mean vector and covariance 
matrix corresponding to  the responses of the classifiers 
are then computed for the target and background re- 
gions. A model of the target shape, in the form of one 
or more aligned binary images, is then used to provide 
our prior knowledge. This is an alternative approach 
to methods based on active contour or point models. 
It is quite flexible because it is possible to include any 
type of region based classifier, it is simple to train, and 
computationally efficient. 

2 Pixel Classification 

Pixel level classifiers simply discriminate between 
image pixels in the target (foreground) region and the 
background region. This discrimination is provided be- 
cause, statistically, their expected response differs over 
these two regions. In this sense, we can utilise the out- 
put from any algorithm that performs such a function. 
Here, we will use three texture based classifiers, and a 
segmentation algorithm. 

Changes in texture properties often signify the 
boundary of a particular region or organ. Therefore, 



small texture variations over the CT image can be used 
to assist in the identification of the region of interest. 
The texture measures are computed at  each 15x 15 win- 
dow in the image. From these sub-regions, a grey-level 
co-occurrence matrix, H (i, j) is computed. The 256 
grey-levels are first downsampled to 16 levels though, 
to reduce the size of the matrix. Three texture mea- 
sures which were found to provide reasonable discrim- 
ination are the texture entropy, energy and homogene- 
ity. The definitions of these, as given by Jain, Kasturi, 
and Schunck [3], are as follows, 

Entropy = - H (i, j )  log H (i, j),  (1) 

Energy = x H~ (i, j ) ,  

Homogeneity = H ( i , j )  
C x l + l i - j l '  i j (3) 

There is naturally some correlation between these 
measures (see Figure 1) and this needs to be taken 
into account. As well as texture, we also make use of 
a simple segmentation algorithm. With this, a fixed 
threshold is used to divide the image into two regions, 
which correspond to the denser organ and bone re- 
gions (light), and the less dense softer tissue regions 
(dark). None of these pixel classifiers give a definitive 
result. Although in isolation each provides relatively 
poor discrimination, collectively they are much more 
useful. The classifiers are combined as follows. 

Firstly, we assume that each vector I = 
(I1, 1 2 ,  . . . , I,), corresponding to the classification at  
a given image pixel, has a multivariate normal density. 
The reason for doing this is described more fully in [5]. 
Then we must determine a mean and covariance ma- 
trix, both for the target region of interest, and for the 
background region. These can be obtained from train- 
ing images, in which the region of interest has been 
identified, and therefore background and foreground 
regions are known. We can, for convenience, refer to 
these parameters as a = (1 f ,  X f )  and d = (Ib, Xb) , 
where the first is the foreground mean and covariance, 
and the second is the background mean and covariance. 

Given a new image, in which we wish to identify 
the particular structure of interest, we first need to 
compute a likelihood image. With our assumption of 
normally distributed feature responses, this is given by 

This image specifies, a t  every pixel, the ratio of the 
probability of foreground to background (the Bayes' 
factor). Simple calculation shows that the sum of this 
term over any group of pixels gives the conditional joint 
probability that the corresponding region in the image 
is foreground [4]. Similarly, we may impose informa- 
tion about the anticipated shape of the target region. 
Suppose we have a set of aligned reference templates 
B1, B2, .  . ., which are examples of the shape of the tar- 
get feature. Each example image is binary, and spec- 
ifies pixel values of 1, for foreground, and 0 for back- 
ground. The binary complement of each of these im- - - 
ages is also needed, B1, B2, .  . ., where each specifies 
pixel values of 0, for foreground, and 1 for background. 
Then we compute the image 

G (2, Y) smooth, (C, Bi) log - = log 
G smooth, (Ci Bi) 

( 5 )  

where smooth, represents smoothing with a Gaussian 
of standard deviation o. (In the example, we use just 
one template B,  and this is sufficient.) With these two 
components, it is not difficult to see that the posterior 
probability of any given region r (or multiple regions) 
is 

This is comprised of an image based term and a shape 
based term. The I?' represents the fact that the shape 
of the region as observed in the image, may need to 
undergo some geometric transformation. This needs to 
account for factors such as scale, position and rotation 
for example, which of course are unknown and need to 
be determined. We can represent the region shape, I?, 
as a plane closed contour, comprised of x (u) giving the 
x-coordinate and y (u) giving the y-coordinate. Then, 
the coordinates of the corresponding region I" in the 
image are, under an affine transformation, 

Similarly, we need to also have the inverse transforma- 
tion, and this can be represented by A. Any candidate 
solution can then be represented x = (I', y), or alter- 
natively x' = (r ' ,  A), where where 7 and A each holds 
the six transformation parameters. We first perform 
the integrations in the brackets in (6), and store these 
images separately, since they will not change during the 



computation of logn (x). So the posterior probability 
is given then by a sum around the region boundary 
and its transformation, over these two constant images. 
The value of each of these two constant images, a t  each 
point on the region boundary is taken, and multiplied 
by dx and dx' respectively, as the boundary is traversed 
in an clockwise direction. Note, the sign of dx and dx' 
at  each point is important. 

The derivative function of (6) is 

(u) log - 
(a) CT Image (b) Energy 

8 log n (x) 
a x  

- - 
(9) 

where the Jacobian is straightforward to compute from 
the definitions already given. A similar term can be 
found when the inverse transformation is used. So 
the derivative a t  any point x (u), y (u), is taken as 
the contribution of the integral (9) between I'[u) and . , 
I' (u + du). But the derivative bf each of the trans- (c) Entropy (d) Homogeneity 
formation parameters r l , y ~ , .  . . is given by the total 
contribution of the integral around the whole region 
perimeter. Figure 1. Features extracted from a CT image. 

3 Parameter Estimation 

We estimate the best region using (6) and (9). Us- 
ing a Markov Chain Monte Carlo procedure, starting 
from an initial guess, the candidate region is itera- 
tively modified by proposing adjustments to shape and 
pose parameters. These proposals are generated from a 
Gaussian distribution, and are selected at  two different 
scales, one large and the other small. The mean value 
of the small scale adjustments is given by the gradient 
function, Equation (9). This enables the estimation 
to mimic a jump-diffusion process, the type of which 
was suggested by Grenander and Miller (21 for extract- 
ing mitochondria shapes. Proposed adjustments to the 
parameters are either accepted or rejected, depending 
on Green's [I] generalised acceptance test, 

a (x + y )  = min * (Y) ~m (Y + dx)) , 
('1 .(x)qrn (X + d ~ )  

where x is the current configuration, y is the proposed 
new configuration, and q, (. + .) is the probability of 
the move proposal. The exact form of these terms is 
described in more detail in [4]. We have found this 
optimisation method to work well, though we have not 
yet experimented with other approaches. 

4 Results 

A given CT image is segmented by finding the region 
which optimises, or gives an acceptable solution, to the 
posterior density above. The optimisation is achieved 
by gradually adjusting the shape and pose of the re- 
gion for a fixed number of iterations. The most proba- 
ble state (one found with highest value for log n (x)) is 
then taken as the best found solution. The illustration 
in Figure 1 gives an example. The task is to segment 
the bladder, a t  the centre of the image. Figure l (a)  
shows the CT image. Figure l(b)-(d) show the results 
of four separate classifiers. The first three show the 
texture energy, entropy and homogeneity computed for 
this image. The mean and covariance matrices used to 
compute these images were first obtained in a train- 
ing phase. Using another scan from the same patient, 
the target region was manually identified. A single ref- 
erence shape for this example was obtained by man- 
ually tracing the same region in another CT scan of 
the same patient. The binary template, and its com- 
plement were convolved with a Gaussian of standard 
deviation 2 pixels, and combined to produce the shape 
model described above. 



The three features shown in Figures l(b-d) and 
the result of the threshold-based segmentation algo- 
rithm, shown Figure 2(a) can be combined or fused. 
These four images provide the feature vector I = 
(I1, 12, . . . , I,) at  every pixel over the original CT im- 
age. Furthermore, we have cr = (f,, Z,) and 5 = 
(Ib, Zb)  from our training phase. Now, we can use 
Equation (4) to fuse the features together into a like- 
lihood image. The likelihood image in this example 
is shown in Figure 2(b), while Figure 2(c) shows the 
positive areas (white) in this same image. The posi- 
tive areas indicate pixels which are more similar to the 
target region, than to the background, since only when 
p (Ila) > p (116) in the log ratio, will the likelihood 
be positive. The region was initialised as a square at 
the centre of the image, and after 50000 iterations of 
the algorithm, the highest resulting region is shown in 
Figure 2(d). 

5 Conclusions 

A new method has been described for extracting fea- 
tures in medical CT images. The approach involves 
combining the outputs of several different pixel level 
classification algorithms. Although each of these, in 
isolation, gives a relatively poor result, when fused to- 
gether, their joint capability is much better. Hence, 
failure, or weaknesses in one classifier, may not cause 
failure of the entire approach. Using this approach has 
the advantage that it only requires a simple training 
phase, and once this is done, the computation is effi- 
cient, and is linear with respect to the perimeter of the 
region of interest. 
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Figure 2. Using the likelihood image to extract 
the required region. 




