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Abstract 

In structural biology, electron tomography is used 
in reconstructing three-dimensional objects such as 
macromolecules, viruses, and cellural organelles to 
learn their structure and properties. In order to suc- 
cessfully perform the three-dimensional reconstruc- 
tion from a series of transparent two-dimensional im- 
ages, the images have to be aligned or registered. In 
this paper, we propose a multi-phase method where 
the registration process is fully automated without 
the need for fiducial markers such as gold particles. 
Our experiments show promising results. 

1 Introduction 

Electron tonlography means reconstructing the 
interior of an object from its electron microscope im- 
ages. In order to perform the 3D reconstruction suc- 
cessfully, the motion between the successive images 
must be solved, i.e., the images have to be aligned 
or registered. In this paper we use a set of two- 
dimensional electron microscope images of a three- 
dimensional object which are obtained by tilting the 
microscope around one axis during the imaging. 

Traditionally the alignment is solved either by 
manually showing the corresponding markers from 
the set of images [7] or automatically using simple 
correlation between the images on several rotations 
and scale [5]. The manual approach has the disad- 
vantage of being time consuming for the user be- 
cause, a t  minimurn, the number of shown markers 
tends to be hundreds. The previous correlation- 
based automatic methods are, however, much more 
inaccurate because the transformations are com- 
puted between the successive images of the tilt series 
and therefore the errors cumulate along the images. 

We propose a method where the registration is 
automated using the state-of-the-art computer vi- 
sion methods but, as in our previous work [I],  no 

*Address: P.O. Box 9400, FIN-02015 HUT,  Finland. E- 
mail: Sami.Brandt@hut.fi 

h d d r e s s :  P.O. Box 9400, FIN-02015 HUT, Finland. E- 
mail: Jukka.Heikkonen@hut.fi 

fiducial markers are needed. The solution to the 
problem lies on searching for point correspondences 
which are tracked along the images which makes it 
possible to optimize the motion paramet,ers for the 
whole image set a t  time. Therefore, our method has 
shown promising results to meet t,he difficulties of 
the present registration methods in electron tomog- 
raphy. 

The registration problem is divided to several 
subproblems: (1) finding initial matches from suc- 
cessive images, (2) estimating the epipolar geome- 
try between images, (3) refining and predicting the 
probable matches using the epipolar geometry with 
the disparity information, (4) matching and track- 
ing the refined matches through the tilt series, and 
(5) optimizing the transfor~nat,ion parameters for the 
image set. 

2 Determining the Initial Correspon- 
dence 

In establishing correspondence between images, 
we will use epipolar geometry as the matching con- 
straint. To estimate the epipolar geometry we, how- 
ever, need some initial matching points between im- 
ages. To solve the initial correspontlence we use the 
Harris corner detector [6] followed with the correla- 
tion and relaxation techniques described in [8]. Be- 
cause the heuristical correlatiori and relaxation pro- 
cess may also give lots of false matches we have pro- 
posed another post-processing step which reduces 
the number of false matches [I] .  It is based on the 
observation that the flow, which is computed by tak- 
ing the difference between the match coordinates in 
two images, must be consistent with the flow of the 
neighboring matching points. Therefore, matches 
associated with flow vectors which are not supported 
by others are discarded. For details, see [I].  

3 Epipolar Geometry Estimation 

In the second stage, the epipolar geometry be- 
tween successive images is estimated. Epipolar ge- 



ometry provides the only geometrical constraint be- 
tween two images taken from the same scene. Once 
the epipolar geometry is known and given one point 
in one image, one can immediately tell the corre- 
sponding line in the other image where the corre- 
sponding point lies. The constraint is represented 
by a 3 x 3 matrix called fundamental matrix (see 
e.g. 181). 

Because an electron microscope can be accurately 
approximated with an affine camera model, we use 
our novel Bayesian approach for the fundamental 
matrix estimation [2 ] .  The method, instead of clas- 
sifying the matches to relevant and false, weights the 
matches by their a posteriori probability to be rele- 
vant. More accurately, the estimation is performed 
as follows, 

At first an initial estimate is computed using the 
LMedS method for the affine F-matrix estimation 
[9 ] .  With this estimate the residual may be com- 
~ u t e d  from 

where f = ( f 1 3  f23  f31  f 3 ~ ) ~  and uk = 
(miT mljTIT. We have proposed [2] to model the 
residual by a Gaussian mixture model, 

where the two Gaussian components ~ ( E I S , )  and 
p(clSf)  correspond to the residuals of the relevant 
and false matches, respectively. The parameters are 
solved bv maximizing the likelihood function 

with respect to its parameters. Now, the a posteriori 
probability P(S,Ic) is given by the Bayes rule 

which is used in computing a new estimate for the 
fundamental matrix. This is performed by weighting 
the new residual by the a posteriori probabilities to 
be relevant given the old residuals which is equiva- 
lent to solving the following eigen equation and tak- 
ing the eigen vector corresponding to the smallest 
eigen value: 

Wf - Xf = 0, ( 5 )  
N where W = xi=1 P(Srlc i ) (ui  - uO)(u i  - U O ) ~ ,  uo = 

1 m ui. The parameter f33 is obtained from 

Another advantage of the Bayesian method is that 
we also obtain a direct estimate for the fundamental 

matrix covariance from [3] 

c, 2 0'4 (C  ~ ( ~ r l c z ) ~ ( U t  - U O ) ( U ~  - U O ) ~ ) Q ~ ?  

2 

(7) 
where 

whereas Xk and q k  are the kth largest eigenvalue and 
its associated eigenvector of W, respectively. 

The covariance estimate is here used in the next 
phase as it contains information for computing the 
confidence intervals of the epipolar lines and even 
some disparity information of the images. 

4 Finding candidates 

In general, if the epipolar geometry was not used 
in the matching process we should consider every 
corner pair as a possible match. We may, however, 
use the epipolar geometry to reduce the number of 
possible matches substantially. If the F-matrix was 
known accurately, we might consider points only a t  
the epipolar lines, but because there is always errors 
in the F-matrix estimation we search for the epipolar 
bands or the error bounds of the epipolar lines which 
are determined by the F-matrix covariance matrix 
estimate (7) [3 ] .  

The epipolar band is usually a hyperbola on both 
sides of the epipolar line. The covariance matrix 
contains also some disparity information of the im- 
age since the bounds are narrowest at the location 
where the match most probably lies [4]. Sometimes 
the error bounds may also be far too pessimistic, so 
here we search only the intersection of the epipolar 
band and the rectangular area centered a t  the most 
probable point with width and height 250 and 50 
pixels, respectively. The corners that are found in 
this region in the second image are set as candidate 
matches for the corner in the first image. Usually 
there are no more than a couple of possible candi- 
dates thus the use of the epipolar geometry reduces 
the possibility of a false match greatly. 

5 Graph Matching and Tracking 

The neighborhood graphs are next formed for the 
corners similarly as explained in [I]. The graphs are 
here associated with the coordinates of the reference 
corner and its k nearest neighbors. 

The corresponding graphs in the second image 
are sought for each corner using the above solved 
candidate set. In order to perform this we should 
take the following things in the account: Firstly, to 
maximize the separability of the classifier, the graph 
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matching procedure should neither be scale nor ro- 
tation invariant because we have the a priori knowl- 
edge that successive images do not differ much from 
each other. However, we should have robustness for 
both rotation and scale. Secondly, the images may, 
however, have a small shift in rotation due to the .As*- 

manual scanning from the film. Y 

Therefore, to remove the effect of the shift in ro- 
tation, we first transform the graphs such that the 
epipolar lines are horizontal. As the affine camera 
model is used this is achieved by a simple rotation 
of the graph where the angle can directly be deter- 
mined by the fundamental matrix [8]. 

After the coordinate transform, for each graph, - .  

a discrete 2D neighborhood uncertainty or impulse 
map is formed: In the reference corner centered co- 
ordinate system we set the values one for the loca- 
tions of the neighboring corners and zero anywhere 
else. Between the images, the location uncertainties 
are modeled by a symmetric Gaussian distribution 
with variance a thus the maps are convolved with a 
two-dimensional Gaussian kernel. 

The purpose of the above maps is to code the loca- 
tion information of the corners in a robust way where 
the neighboring information is preserved. The com- 
parison of the graphs is made by computing the nor- 
malized correlation between the uncertainty maps of 
the matching candidates. Now, the maximum corre- 
lation scores exceeding 50% are taken as correspon- 
dences. In addition, we use values 5 and 10 for k 
and combine the results since more matches can be 
found in this way compared to a single value of k. 

The above computations are finally made for all 
consecutive image pairs in a row and the results are 
saved in an appropriate data structure. The corner 
tracking is thereafter rather straightforward to im- 
plement since all that must be found anymore is the 
individual corner coordinates in each image and the 
image numbers where the chain starts and ends. 

6 Parameter Optimization 

The final stage in solving the alignment is the 
optimization of the parameters which are needed in 
transforming each image to a common coordinate 
plane. As the imaging operation model we use the 
one defined by Lawrence 171 with slight modifica- 
tions. The jth corner coordinates m) = (xj yj)T 
in the i image are related to the corresponding 3D 
coordinates x as follows: 

m; = S~R;PR;X~ + t 2 ,  (9) 

where sz is a scaling factor, RL is a 2 x 2 rotation 
matrix associated with the angle a,  Rb is 3 x 3 rota- 
tion matrix describing the tilting operation around 
y-axis, t' is a translation vector for image i, and P 

Figure 1: An electron microscope image of a mito- 
chondrion. 

is an orthographic projection matrix 

Optimal estimates for the unknown transforma- 
tion parameters are obtained by minimizing the sum 
of residuals squared, which is equivalent the follow- 
ing cost function being minimized 

where m; is the measured corner coordinate vector, 
and di3 is the Kronecker delta product indicating 
whether the jth indexed corner chain is found in im- 
age i. The unknown the parameters are finally op- 
timized by minimizing the cost function using stan- 
dard optimization tools. 

7 Experiments 

In the first experiments we have used a tilt series 
of a mitochondrion of which one image is displayed 
in Figure 1. The image series consist of 41 images 
tilting the specimen by three degree increments from 
GO0 to GO0 where one image size is about 3200 x 
2300 pixels. Some results are illustrated in Figure 2 
where few trajectories of the found feature points 
are shown after the transformations are made to the 
images. Ideally, the trajectories should be horizontal 
lines which is quite well fulfilled here. 

As a remark, it is known that the localization 
of the Harris corner detector is not, very accurate. 
In addition, corner point localization is a difficult 
problem for this kind of a natural object. In order 
to get better results, a more sophisticated corner 
or some other feature detector should therefore be 
experimented. In addition, as it can be seen form 



Figure 2: Some feature point trajectories in the tilt 
series after the registration. One feature point loca- 
tion is marked with points while the locations of the 
same feature point in different images are connected 
with lines. Here only the chains longer than 5 are 
shown for the clarity reasons. 
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