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Abstract 

The tree-structured wavelet transform has re- 
ceived a lot of attention and has found successful 
applications in signal denoising, image coding, image 
analysis, etc. In this paper, we present an analysis of 
the structural stability of the tree-structured wavelet 
transform, a topic which has not been addressed 
properly in previous research. We also present a 
texture classification algorithm based on a bottom- 
up tree-structured wavelet transform. The proposed 
approach does not require ad-hoc parameters and 
demonstrates superior performance, as compared to 
the top-down approach proposed previously. 

1 Introduction 

Texture recognition in digital images has received 
considerable attention over the past few decades and 
a large number of approaches have been suggested. 
Despite these efforts, texture analysis is still con- 
sidered as an interesting but difficult issue in image 
processing and computer vision [I] [2]. 

One difficulty in texture recognition was the lack 
of adequate tools for characterizing textures. The 
wavelet transform attempt to overcome this diffi- 
culty, especially, the tree-structured wavelet trans- 
form (TSWT) has received a lot of attention. Re- 
cently, Chang et al. [3] proposed a texture classifi- 
cation algorithm based on a top-down TSWT. Al- 
though, high classification rates were reported, its 
performance is highly dependent on a set of param- 
eters that have to be determined in an ad-hoc way. 

In this paper, we provide an analysis of struc- 
tural stability of TSWT, a topic that has not been 
addressed properly in previous researches. We also 
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propose a texture classification algorithm based on 
a bottom-up TSWT, which is not dependent on ad- 
hoc parameters and shows superior performance. 

2 Space-Frequency Decomposition 
Using Wavelet Transform 

In the pyramid-structured wavelet transform 
(PSWT), the decomposition is performed recur- 
sively to the output of the lowpass filter. However, 
since the most important information of textures of- 
ten appears in the middle frequency channels, fur- 
ther decomposition just in the lower frequency sub- 
bands may not help much for the purpose of texture 
recognition. A more effective way to perform the 
wavelets for textures is to find the significant fre- 
quency channels and then decompose them further. 

The above idea leads naturally to TSWT [4]. 
The key difference between TSWT and PSWT is 
that in TSWT the recursive decomposition is no 
longer simply applied to the low frequency sub- 
bands. There are basically two approaches that can 
be used to  extract the significant subbands of a tex- 
ture image: the top-down ( T S W T T ~ )  and bottom- 
up (TSWTBu) approach. In TSWTTD, a texture is 
decomposed recursively from the top to destination 
level, while the decomposition is performed only on 
the subbands which are deemed to be important. 
On the other hand, in TSWTsu, a texture is first 
fully decomposed and then the subbands which are 
deemed to be unimportant are pruned, as the algo- 
rithm proceeds from the bottom to the top level. 

Chang's algorithm (Figure 1) employs a criterion 
to decide whether a subband has to be decomposed 
or not. In the algorithm, only the nodes whose an- 
cestors are significant will be considered as the can- 
didates for further decomposition. This leaves the 
possibility of missing significant nodes that fail to 
have significant ancestors. Moreover, the algorithm 
classifies textures using only the features of the dom- 
inant subbands. In the following, we describe short- 



comings of the algorithm in more detail. 

1 .  Decompose a given textured image by using TSWT into 4 
subimages, which can be viewed as  the parent and children 
nodes in a tree. 

2. Calculate the energy of each decomposed image. 

3. If the energy of a subimage is significantly smaller than 
others, we stop the decomposition in this region since it 
contains less information. That is, if e < Ce,,., stop 
decomposing this region where C is a constant less than 1.  

4.  If the energy of a subimage is significantly larger, we apply 
the above decomposition process to  the subimage. 

Figure 1: The TSWTTD algorithm. 

Firstly, since pruning is based on the local rather 
than global energy features TSWTTD would not al- 
ways result in a globally optimal space-frequency de- 
composition. To illustrate the point, suppose that 
among the four nodes in the level 1 (see Figure 2), 
the first node has the maximum energy and that 
the others have energies smaller than Cel . Here ei 
denotes the energy of the i-th node. Then, if we 
decompose the nodes a t  the level 1 using TSWTTD, 
only the first node will be decomposed and hence the 
children nodes under the other nodes will not be vis- 
ited even if some of them might have large energies. 

Level 2 e, < C e ,  

Figure 2: Example of a problem in TSWTTD. 

Secondly, they propose to characterize each tex- 
ture by the energy map that is defined as the vec- 
tor whose components are the energy of subbands 
appearing in the structure of a texture. However, 
since the structure is not unique for a texture, they 
modify all structures of a texture to the most diverse 
one and use the average of the corresponding energy 
maps as the texture's template. 

Lastly, they employ energy maps defined over 
the first five dominant nodes rather than the whole 
nodes of a structure. Although, the adopted ap- 
proach results in less structural variations of struc- 
tures, it deprives the classification algorithm from 
the ability to discern texture samples which are iden- 
tical with respect to their first five dominant nodes. 

3 Texture Recognition by TSWTBu 

algorithm is free from the ad-hoc and heavily data 
dependent parameter C, which is needed for making 
a trade-off between the structural stability and the 
classification accuracy in the algorithm of Chang. 

1. Decompose a given textured image fully by using TSWT. 

2. Calculate the energy of each decomposed node. 

3. If the energy of a parent node is larger than the average of 
that in its children, we prune the children. 

4.  Repeat step 3 from the bottom level to  the top. 

Figure 3: The TSWTsu algorithm. 

The algorithm, fully decomposes a texture sam- 
ple by TSWT and then calculates the energy of 
the nodes of the sample's fully-decomposed tree- 
structure. The energy of a node is defined as 

where A4 and N denote the number of the rows and 
columns of the subband corresponding to the node, 
and x(m,n)  denotes the wavelet coefficient a t  the 
(m,n)-th position. If the energy of a node is larger 
than the average of the energy of its children, the 
children are considered as being insignificant and are 
pruned. This pruning scheme proceeds from the bot- 
tom to the top and results in the sample's structure. 

Ideally, it is desirable that each texture has a 
unique structure, and that these structures have 
large between-class scatter. However, most of tex- 
tures shows structural diversity which makes it dif- 
ficult to characterize them efficiently in terms of 
their structure or the corresponding energy tem- 
plates. Energy template is defined as the average 
of the energy maps for all the samples of a texture 
which have identical structure. In the proposed algo- 
rithm, we first identify all of the distinct structures, 
found over the samples of a texture, and then calcu- 
late the corresponding energy templates (Figure 4).  

1 .  Count the number of structures k i  in Ti. 

2. Average the energy and generate a template for structure 
j .  

3. Repeat step 2 for all structures in Ti 

4.  Repeat step 1 - 3 for all textures 

3.1 Decomposition and Structuring Figure 4: Generating templates. 

In the proposed TSWTsu based algorithm (Fig- 3.2 Structural Stability Analysis 
ure 3), since pruning proceeds from the bottom to 
the top level, all nodes will be visited and there is no One of the basic problems in characterizing 
danger of missing a significant node, which was not textures using TSWT is the structural diversity. 
the case with Chang's algorithm. Furthermore, the Though, Chang referred to this problem, they did 



not provide any measure for quantifying this diver- 
sity. We introduce an entropy based measure, called 
structural entropy. 

First, We define the local structural entropy of 
the i-th texture as 

where ki denotes the number of structures of the 
i-th texture and qj denotes the probability of occur- 
rence of the j-th structure. It takes on value zero if 
all samples have identical structure. When multiple 
structures exist, local texture entropy would take on 
low values if a structure occurs very frequently and 
the other structures very rarely, and takes on high 
values if structures occur uniformly. We also define 
the global structural entropy as 

where n denotes the number of structures found over 
the samples of all textures and pl denotes the prob- 
ability of occurrence of the 1-th structure. 

Generally , it is desirable to have low local struc- 
tural entropies and a high global structural entropy. 
Hence, it would be proper to define the structural 
entropy of a texture as the ratio of its local struc- 
tural entropy to the global structural entropy as: 

The structural entropy of a texture will take on low 
values if the local structural diversity is low and the 
global structural diversity is high. H(Ti) is defined 
to be zero when all samples have a unique structure, 
as in PSWT. Figure 5 shows the algorithm. 

1.  Count the number of structures (n)  for all samples 

2. Calculate the probability pr for all structures. 

3 .  Calculate the structural entropy Hgrobar for all samples 

4. Count the number of structures ( k i )  for the texture T i  

5.  Calculate the probability q j  for all structures in T, 

6.  Calculate the structural entropy HlOcar in Ti. 

7 .  Calculate the texture entropy H ( T , ) .  

8.  Repeat steps 4 - 7 for all textures. 

may occur when samples of different textures hap- 
pens to have identical dominant nodes. To avoid 
this problem, we make use of the complete struc- 
ture, rather than few dominant nodes (Figure 6). 

Learning phase: 

1. Decompose a training sample by using TSWT, and 
calculate the energy and structure vector. 

2. Repeat step 1 for all samples. 

3. Generate templates for all structures 

Classificatton phase: 

1 .  Decompose a test sample by using TSWT, and cal- 
culate the energy and structure vector. 

2. Use the energy in the same nodes as the test sample 
from each template. If the same nodes do not exist, 
set the energy to zero. 

3. Calculate the distance by using the distance function. 

4 .  Assign the test sample to the texture that has the 
minimum distance. 

Figure 6: Classification algorithm. 

In the learning phase, we decompose the training 
samples by using TSWTsu and construct the struc- 
ture vectors and the corresponding energy templates 
for each texture. Structure vector is a binary vector 
that we use to encode a tree-structure. It is con- 
structed by scanning the nodes in a tree-structure 
from the top to bottom level and assigning 1 or 0 to 
the vector coefficient according to whether the cor- 
responding node is split or not to its children (see 
Figure 7). Since the lowest level has no children, 
the structure vector is uniquely determined by the 
first L - 1 levels of the tree, where L denotes the 
wavelet decomposition level. Hence, the dimension 
of the structure vector is given by 

Level 0 
Level 1 
Level 2 

Tree Structure Structure Vector 

Figure 7: Extracting the structure vectors 

In the classification phase, test samples are clas- 
sified according to their similarity with templates of 
textures. As the similarity measure, we use the fol- 
lowing distance function 

Figure 5: Calculating structural entropy. 
D(X~Y)=D~(X~Y).~XP(D~(X~Y)/~) (6) 

where- De (x, y) and D, (x, y) stand for the Euclidean 
3.3 Classification distance between energy maps and structure vectors, 

respectively. We note that the distance function 
Chang uses only five dominant nodes of a Sam- D(x, y) is reduced to De(x, y) when x and y have 

ple's structure for classification, so misclassification the same tree-structure. 



4 Experiments 

4.1 Experimental Data 

We used 25 textures, which are showed in Figure 
8, from Brodatz's album [5]. Each image, which is 
of size 512 x 512 pixels, was scanned with 100 dpi 
resolution with 256 gray levels. 

Two sampling schemes were used: the first one 
allow for overlap between the training and test sets. 
The second one does not allow for overlap and re- 
sults in disjoint training and test sets. We randomly 
sampled 100 subimages of size 256 x 256 for training 
and test samples, respectively. 

The size of the smallest subimage, which is nec- 
essary as a criterion for stopping further decompo- 
sitions, should be found experimentally. If the de- 
composed subimage is too small, the energy value 
may vary widely from sample to sample so that the 
feature may not be stable [3]. We set the size of 
the smallest subimage to 32 x 32 pixels which cor- 
responds to  three level of decomposition for sample 
images of size 256 x 256. We set the value of the 
parameter C in Figure 1 to 0.3, as in [3] and used 
Daubechies 20 as the wavelet filter. 

Table 2 shows the number of generated templates 
and the entropy of textures under PSWT, TSWTTD 
and TSWTBu decomposition schemes. We note that 
HlOcaI and H are the local entropy and the entropy 
values averaged over 25 textures. They provide sim- 
ple measures of the structural diversity of textures 
for a given decomposition scheme. 

Table 2: Structural diversity of each decomposition 

The TSWTBu showed larger structural diversity, 
as compared to TSWTTD, in terms of both the av- 
erage number of templates and the average struc- 
tural entropy. Noting that the former scheme shows 
higher classification accuracy, the aforementioned 
fact points out the superiority of the TSWTBu 
scheme in generating relatively more representative 
and hence discriminative structures of textures. 

scheme. 

5 Conclusion 

In this paper, we provide an analysis of the struc- 
tural stability of TSWT and proposed texture en- 
tropy as a metric to measure the structural stability 
of TS\VT1s. \Ire also proposed a classification al- 
gorithm based on TSWTBu. The algorithm allevi- 

Structural Entropy 
' Ht,,,r Hgtobal H 

0.68 3.76 0.18 
0.17 1.91 0.09 
0.00 0.00 0.00 

Method 

TSWTBU 
TSWTTD 
PSWT 

Figure 8: Textures for classification experiments. 

Number of 
Templates 

2.44 
1.32 
1.00 

4.2 Experimental Results 

Table 1 shows the average of the classification 
rate of algorithms based on PSWT, TSWTTD and 
TSWTBu decomposition schemes. In Table 1, D-1 
stands for the distance function given by equation 
(6), D-2 for the energy distance function D,, and 
D-3 for exp(D,/d), respectively. 

Table 1: Classification accuracy for each decompo- 
sition scheme. 

As can be seen from Table 1, TSWTBU shows 
relatively higher classification accuracy than other 
two schemes, especially in the case of no overlapping 
between the training and test sets. Higher classifi- 
cation accuracy of TSWTBu, in terms of distance 
function D-3, points out the superiority in extract- 
ing structures of textures that are relatively more 
discriminative, as compared to the other two. 

Accuracy (%) 
D-1 D-2 D-3 

99.8 99.8 41.6 
99.1 99.1 26.9 

Method 

TSWTeu 
TSWTTD 
PSWT-- 
TSWTeu 
TSWTTD 
PSWT 

ated the problems associated with TSWTTD based 
algorithm and demonstrated superior performance 
as compared to the algorithms based on PSWT and 
TSWTTD decomposition schemes. Our current work 
includes incorporation of features other than energy 
to improve classification accuracy of the algorithm. 
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Overlap 
Overlap 
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