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Optimal Homography Computation with a Reliability Measure 
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Abstract normalization to make the Z component 1. In order 

This paper describes an algorithm for optimally corn- to remove scale we the nor- 
puting the homography between two given sets of points 11'11 = ', where the norm of matrix 
on a plane and evaluating the reliability of the result- = ( H i j )  is defined by IlHll = d m .  
ing mapping. The basic principle is maximum likelihood We regard data points as random variables. Let 
estimation by a technique called renormalization. X, and Xb, be the covariance matrices of points 

(x,, y,) and (xb,, y;), respectively. The covariance 
1. Introduction matrices of the corresponding vectors x, and xb, are 

A homography is a mapping that occurs between 
two perspective images of a planar surface in the 
scene [4]. The computation of homographies plays 
an essential role in image registration and mosaicing 
[lo]. By computing the homography between two 
images of a planar surface, we can obtain informa- 
tion about the 3-D position and orientation of the 
surface and the camera motion [8, 9, 121. Homogra- 
phies also play an essential role in scene understand- 
ing [I, 3, 111 and calibration [2]. 

In the past, the least-squares method has been 
frequently used, but it has been pointed out that the 
least-squares solution has statistical bias [5, 81. We 
apply the statistical optimization theory of Kanatani 
[5, 71 to homography estimation and derive an al- 
gorithm that can not only compute a homography 
optimally but also also evaluate the reliability of the 
computed solution in quantitative terms. 

2. Homography Computation 

A homography is an image mapping in the form 

In terms of 3-D vectors x = (XI  f ,  y l  f ,  l ) T  and XI = 
(x'l f ,  y'/ f ,  l)T (the superscript T designates trans- 
pose), eqs. (1) can be written as 

A B C l f  
x l = Z I H x ] ,  H =  

V[x,]= ( t? ) , V[x61= ( ii ) , 
(3) 

We assume that these covariance matrices are known 
only up to scale and write 

V[x,] = c2~o[x,], V[x),] = c2~o[xh].  (4) 

We call c the noise level and the matrices Vo[x,] and 
Vo[xb,] the normalized covariance matrices, which 
specify the relative dependence of noise occurrence 
on positions and orientations. If no prior knowledge 
is available for them, we simply assume Vo[x,] = 
Vo[xb,] = diag(1, 1,O), where diag(. - -) designates the 
diagonal matrix with diagonal elements in that 
order. 

The computed matrix H is also a random vari- 
able. We consider, in the parameter space of H ,  
the orientation along which error is the most likely 
to  occur and on it take two points a standard devi- 
ation apart from the mean in both directions. We 
call the corresponding matrices, {H(+), H(-I), the 
prima y deviation pair [5]. 

3. Algorithm 

The computational technique described below is 
called renormalization and is shown to  be optimal 
in the first order [5, 61. 

Input: Two sequences of points represented by 
vectors {x,):=~ and {zb,)L together with their 
normalized covariance matrices {V~[X,])&~ and 
{vo[~bl)Z='=l ( N  2 4). 

where f is a scale factor defined in such a way that output: optimal estimate I;T and its primary 
x l  f and y l  f have order of 1 and Z[ . ] denotes the deviation pair { H ( + ) ,  H(-) 1. 
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Figure 1: (a) A quadrilateral region (perspective image). (b) A rectangular region (true shape). (c) Roundary image 
(solid lines) and its standard deviation pair (dotted lines). 
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(8) (b) 
Figure 2: Boundary images mapped by ten instances 
of the computed homography (solid lines) and the true 
shape (dotted lines). (a) Our algorithm. (b) Least- 
squares method. 

2. Define the following tensor M :  

3. Compute the following tensor N = (Nijkl): 

4. Compute the nine eigenvalues X1 > . . 2 Xg 
of tensor 

M = M - c ~  (7) 

and the corresponding orthonormal system of 
eigenmatrices { H I ,  ..., H9) of unit norm. 

5. If Xg = 0, return As, H g ,  Hg,  and c. 

6. Else, update c and W, in the following way 
and go back to  Step 2: 

7. Estimate the square noise level by 

8. Let H = H g ,  and compute 

9. Return H and {H(+), H(-1). 

Symbols and notations: 
The letter I denotes the unit matrix. The sym- 

bols x,(;) and x&(,, denote the ith components of 
\ ,  

x, and x&,  respectively. The symbol wLk0 denotes 
the (kl) element of W,. For A = (Aij) and B = 
(Bij), the product C = A @ B is a tensor with ele- 
ments C i j k l  = AijBkl. We define e(') = (1,0, o ) ~ ,  
e(2) = (0,1, o ) ~ ,  and e(3) = (0,O, I ) ~ .  The symbols 
Vo[x,]ij and Vo[x&]ij denote the ( i j )  elements of the 
normalized covariance matrices Vo [x,] and Vo [x&] , 
respectively. The symbol ~ i j k  denotes the Edding- 
ton epsilon, taking 1 and -1 if (ijk) is an even and 
odd permutation, respectively, and 0 otherwise. 

The product MH of tensor M = (h;lijkl) and 
matrix H = (Hij) is a matrix whose ( i j )  element is 

xi M ~ ~ ~ ~ H ~ ~ .  We say that H is an eigenmatrix 
9 - 

of M for eigenvalue x if M H = AH. f i r  computing 
eigenmatrices, we regard the matrix H = (Hii) and 
the tensor M = ( ~ i j k l )  as a nine-dimensional vector 
and a 9 x 9  matrix [5]. For A = (Aij) and B = (Bij), 
we define (A; B) = c;,~=, Aij Bij . For a = (ai) and 
A = (Aij), we define a x  A x a  to be a symmetric ma- 
trix whose ( i j )  element is &ikl~jmnar;amAln. 
The operation ( . ), denotes the rank-constrained 
generalized inverse with rank 2; this operation is nec- 
essary for preventing numerical instability [5] .  The 
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Figure 3: (a) A real image of an outdoor scene and selected feature points. (b) A zoomed image of the same scene; it 
corresponds to the white frame in (a). (c) The mapped boundary (solid lines) and its primary deviation pair (dashed 
lines) computed by our algorithm. (d) The mapped boundary computed by the least-squares method. 

shown in Fig. l(c). Fig. 2(a) shows the boundary im- 
ages for ten instances obtained by changing the ran- 
dom noise. The standard deviation pair in Fig. l(c) 
characterizes possible deviations of the solution very 
well. Fig. 2(b) shows the results computed by the 
least-squares method, which minimizes 

I L L  a=l 

Figure 4: Synthetic images of a grid pattern. Fig. 3(a) is a real image of an outdoor scene, and 
Fig. 3(b) is its zoomed image. We selected feature - ~, - 

points as marked in the images and computed the operation N [ . ]  normalizes a matrix to have unit 
homography. Mapping the boundary of Fig. 3(b) norm. 
according to the computed homography, we obtain 

4. Examples 

Fig. l(a) is an image of a rectangular region 
and ten points in it. Fig. l (b)  is an image of the 
same region viewed from above. After randomly 
perturbing the ten points in Figs. l(a) and (b) in- 
dependently, we computed the homography H be- 
tween the two images and its standard deviation pair 
{H(+), H ( - I ) .  The boundary image of the region 
in Fig. l (a)  mapped by the computed homography 
H and its standard deviation pair { H ( + ) ,  H(-)) are 

the frame with its primary deviation pair shown in 
Fig. 3(c). It is seen that the upper-right part of - - 7  - - 

the mapped frame is the most uncertain. Fig. 3(d) 
shows the result by the least-squares method; its 
primary deviation pair is not defined. We observe 
the upper-right part extends infinitely to the upper 
right and appears from the lower left. As compared 
with this, our algorithm yields a reasonable solution 
even in such an unstable feature configuration. 

We evaluated the accuracy and efficiency of our 
algorithm for the images in Fig. 4(a) by adding ran- 
dom noise of standard deviation o (pixels) to the co- 
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Figure 5: (a) Errors of computation: optimal algorithm (solid line); least-squares method (dashed line); theoretical 
lower bound (dotted line). (b) Computation time (seconds) for our algorithm (solid lines), the second-order renormal- 
ization (dashed lines) and the least-squares method (dotted lines). 

ordinates of the  grid points independently. Fig. 4(b) 
plots the root-mean-square error between the  com- 
puted matrix H and the  true value H; we repeated 
50 computations with different noise for each a. The 
dotted line shows the theoretical lower bound com- 
puted by the theory of Kanatani [5, 61. Our al- 
gorithm not only performs better  than the  least- 
squares method but  indeed also almost at tains the  
theoretical lower bound. Fig. 4(c) plots the  aver- 
age computation time in seconds. The least-squares 
is much faster than our algorithm. Our algorithm 
serves as a benchmark for evaluating to  what extent 
accuracy is sacrificed for efficiency. 

5.  Concluding remarks 

This paper has described a n  algorithm for opti- 
mally computing the  homography between two given 
sets of points on a plane and evaluating the  relia- 
bility of the  resulting mapping. This algorithm is 
very accurate and robust and is expected to be used 
widely for many computer vision applications. 
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