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Abstract 

A computed 3D imaging system based on local 
image reconstruction (LIR) using Wavelets 
Sampling Model is presented. In this paper, by 
means of combination of wavelets sampling model 
and singular value decomposition, moderate CT 
image with least squares of error can be 
reconstructed from a limited number of projections 
by only once operation of matrix multiplication. As a 
result, local image reconstruction idea is proposed to 
reduce quantity of calculation and memory. In 
addition, as this algorithm is suitable for being 
achieved by massive parallel processing, we show 
an outline of VLSI parallel processor with it. As the 
method reduces reconstructing computation and 
simplifies projection data acquisition, it becomes 
possible to develop faster and more compact 
industry-oriented 3D CT system. Computer 
simulation of 3D image and design for VLSI and 
industry-oriented 3D CT system with this method 
are presented a t  last. 

1 Introduction 

In many industrial application of computed 
tomography (CT) other than medical diagnostic 
areas, there are circumstances that  a sufficient 
amount of projection data can't be easily obtained. 
For instance, in cyclotron beam density 
measurements and nondestructive diagnostics on 
belt conveyer, in order to ensure efficiency, 
projection data had to be collected over a few views. 
In such limited-view cases, if using a standard 
multi-data reconstruction algorithm, such as the 
filtered back-projection (FBP) method, results 
generally are image reconstruction deteriorated 
with severe artifacts. In industry application, 
furthermore, faster and cheaper CT equipment 
become more important and necessary because 
components must be nondestructive inspections on 
belt conveyer. Because of the important of the 
limited-views problem, many specialized algorithms, 
which have attained some degree of success, have 
been introduced over the past decades [I]-[2]. 

However, blurring is still one of the major factors 
that  degrade the resolution and produce shape 
distortion. 

In our previous work, a method called fast model 
reconstruction (FMR), which obtains reconstruction 
image by using both a truncated singular value 
decomposition (truncated SVD) and sampling model 
object, have been proposed [3]-[5). With FMR, even 
if reconstructing from fewer projection data with 
less information, because effect from whole of the 
projection paths is contained in the model, results 
have better redundancy. I t  is found that the 
implementation of fast image reconstruction can be 
made only with matrix calculation. 

In previous work, classical Shannon's sampling 
function (sinc) always be use as the distributed 
function. The sinc function is an ideal filter. 
However, because i t  is an  infinite function, there is 
contradictory between reconstruction efficiency and 
error controlling. 

In the past decade, wavelet theorem has been 
introduced into signal process. I t  is proposed that 
the classical Shannon sampling theorem can be 
extended to the subspaces used in the multi- 
resolution analysis in wavelet theory [lo]. 

In this paper, we introduce wavelet theorem into 
sampling model image reconstruction method. We 
present that wavelet function can take the place of 
classical Shannon's function used in sampling model 
object. Suitable wavelets basis is chosen to construct 
wavelet sampling function. The sampling model 
reconstruction method with the wavelet sampling 
function has good computational efficiency with less 
reconstruction error. In order to increase 
computation speed, we use local area reconstruction 
method replace our previous method, this method 
solves the problem by calculation a great deal of 
small blocks of sub-matrices other than a big matrix. 
We present that the algorithm of this method is 
suitable for VLSI parallel processing. 

2 Image Reconstruction Model on 
Shannon's Sampling Function 

In this paper, we make two fundamental 
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frequency w ,. The other is that the continuous 
signal g is sampled at or above the Nyquist 
frequency--2 w ,. The Shannon's sampling theorem 
states that any band-limited continuous signal g, is 
sampled at or above its Nyquist frequency (yielding 
the discrete function g(x,y,)), can be completely 
reconstructed. To a 2-D object g(x,y), its Radon 
transform (projection data) be represented as a line 
integration of intensity g(x,y) along each ray: 

0 0 

where x,=kT, yi=iT, H is the length of ray from 
entering point to escaping point through projection 
interval, h is the length from entering point to any 
point on the ray. 

The cu, in this formula, is called "Line Integration 
Effect Coefficient (LIEC)". It only depends on 
located relation between rays and sample points, . - 

and has no relationship with density of sample 
points. It expresses the contribution of sample 
points density to ray projection value. By means of 
(1) of every rays, we have projection matrix as: 

P = C . g + e  ( 2 )  
where P=(p,) and e={e,) are m-D vector of 
projection data and error. g=(g,) is n-D vector of 
sampled-value. C={cm) is m X n matrix. The element 
of matrix c,=Cki is the LIEC which shows how 
much contribution of nth sampled-value to mth ray. 

Because matrix C depends on methods of 
sampling and projecting, it is called "Sampling 
Projection Model Matrix". Using singular value 
decomposition and minimum norm least square 
solution of C in (2), it is easy to see that 
reconstruction equation be reduced to: 

g =VA-UtP =C+P (3) 
In advance, we calculate m Xn constant matrix C', 
and then by just once multiplying with measured 
projection data P (m-D vector) , we can easily obtain 
n-D vector sampling point value g. As a result, we 
investigate an image reconstruction method on 
sampling model object. 

3 Wavelet Sampling Model Object 

The ideal reconstruction process with sinc function, 
although realizable, because sinc is infinite and 
decays slowly, in order to reconstruct an image from 
its sample dataset perfectly, requires a integration 
from an infinite sum, so is not practical. Therefore, 

a certain integration area must be determined to 
approximate to an ideal low-pass filter, common 
solutions are useing a truncated sinc or a window 
function. Unfortunately, notable truncation error 
(blurring, aliasing, and ringing) and non-sinc error 
arise with these methods. 

In this section, we substitute wavelets sampling 
theorem for the Shannon's sampling theorem to set 
up sampling model object. With wavelet sampling 
model object, the reconstruction error is remarkably 
decreased and calculation efficiency is increased. 

At first, we propose that there is a sampling 
theorem imbedded in any wavelet theory, That is, if 
we begin with any scaling function satisfying the 
required properties in [8], there is a natural 
sampling function S,(t) that gives a sampling 
expansion f o r f ~  Vo. 

We suppose d (t) is a real continuous scaling 
function, and whose translates and scales { d (2x-k)) 
form an orthonormal basis of a subspace V, of L2(R). 
While both a continuous signal fit) and d (t) E Vo, we 
have the wavelet transform off as: 

f ( 4  = C a , O ( n  -kJ (4) 
k 

and with it, the Fourier transform of discrete 
function An) and continuous function fit) can be 
written as: 

where d* is in L2 (0, I) and / * ( o )  is continuous. 
From (5) and (6), the wavelet sampling function is 

obtained and shown as: 

In the last ten years, several orthonormal wavelet 
basis for L2(R) have been constructed which share 
the best features of the Haar basis and the 
Littlewood-Paley basis, these new constructions 
have excellent localization properties in both time 
and frequency [8]. One of them is the Mayer basis, 
in which Fourier transform of its d and 9 is 
compactly supported. We use Mayer wavelet to 
construct our wavelet sampling function S,. 
According to the define of Mayer wavelet [9], S, 
(Fig. 1) can be obtained by (7): 

sin-.  t 
S,(t) = 

3 + I ~ ~ , ~ s ~  ( o )  . cosd dt (8) 
nt ?r 

where 



7r 3 
cos[- u(2 - - w)] 

. I  2 2~ sm (0) = 
7r 3 7r 3 

cos[- o(2 - - w) ] + cos[- . u(- w - I)] 
2 2n 2 27r 

Although S, is infinitely supported, it decays far 
more rapidly than sinc. We replace sinc with S, to 
set up sampling projection model matrix C. 
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Fig. 1 1-D Meyer sampling function Sm(t) 

4 local area reconstruction method 

Our previous method in section 2 is a method called 
whole area reconstruction (WAR) method because 
reconstruction of each sampling point uses all of the 
projections through whole reconstruction area. The 
reconstruction is fulfiiled by only once 
multiplication of a big matrix. 

In theory, effect area of one sampling point is 
infinite, and in order to reconstruct a sampling 
point density, projections of infinite area is 
necessary. In practice in our previous work, all of 
the projections through projection area (whole area) 
other than through an infinite area were used to 
complete reconstruction. The projection area is still 
too big for a big size 3D object. In fact, notable effect 
area of a sampling point is much smaller than 
projection area generally. We call this effect area 
'local area'. Most of information of sampling point 
density is contained in projections through this local 
area. Density of one sampling point can be 
reconstruction only by these projections, so we call 
our method local area reconstruction (LAR) method. 
It is obvious that  much error (local area error) will 
occur in this method, however i t  is reduced by using 
wavelet model. 

Fig.2(a) shows the relations among sampling 
point, local areas and whole area (We use parallel 
bean1 here). As examples, local area I and local area 
11 are set as 9 x 9  and 17X 17 points respectively. 
Fig.Z(b) (area I ) and Fig.2 (c) (area II show that, 
with different effect area, one sampling point has 
different LIECs because there are different number 
of beam between the two areas, however the 
coefficient distribution are same. From them, it is 
obtained that C'(see equation (2)) also have same 
forms. And as a result, image reconstruction using 
two different local areas is same in the main. A 

theorem is drawn from these: 
Theorem I (local image reconstruction theorem): 
In sampling model space, generalized-inverse matrix of 

whole area LIECs can be obtained by means of 
generalized-inverse matrix of local area LIECs. 

The theorem means that, image reconstruction 
can be complete either using in one time or one 
point by one point. But with the last one, 
computation and memory required can be reduced 
because big block matrix is solved using small 
blocks of sub-matrices. 
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Fig.2 Projection relations and LIECs with local area 



5 Design for VLSI and 3D CT System 

Because the algorithm of this method included 
multiplication and addition only, it is suitable for 
parallel processor by VLSI. We design our leased 
VLSI with the algorithm. In one chip, there are 32 
calculation units (containing 300,000 gates, using 
0.35 11 rule). One VLSI chip be used to calculate 
reconstruction of one slice containing 512 X 512 
sampling points in 3D object. 
Using this VLSI, a VLSI parallel processor is 
designed. This parallel processor contains one 
control board and seven parallel arithmetic 

squares of error from only a few projection data. The 
method does not require a large amount of 
calculation after acquisition of projection data, and 
not require a large of memory for reconstruction. CT 
image can be obtained by only once operation of 
matrix multiplication. The structure of 
reconstructing computation is suitable for VLSI 
circuit by ASIC. As the method does not require a 
large amount of calculation and memory for 
reconstruction, and does not require a complicated 
mechanism for projection data acquisition, there is 
possibility of developing more compact industry- 
oriented 3D CT system. 
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Fig.3 A structure of t h e  3D CT system 
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