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Abstract 
A n~otion-image classificatioi~ xilethod is pre- 

sented. Our method is designed based on selective 
attention model which dynamically changes its fo- 
cusing regions (domains of feature extraction) ac- 
cording to its state so that  the essential features can 
be extracted from input images. The advantages 
of our method are 1)  the feature extraction is not 
affected by the image variations outside of the fo- 
cusing regions, 2) feature extraction and the state 
transition can he complited much faster than other 
methods, 3) focusing-region sequence can be learned 
incrementally from training samples , 4) the clas- 
sifier can he derived from  notion-image identifiers 
trained independently, and 5) the classifier does not 
output unique result but possible candidates when 
the input is ambiguous. 

1 Introduction 
Motion-image classification technology is essen- 

tial for recognizing the dynamic scene and plays an 
important role in visual surveillai~ce systems, hunlan 
interface syst,ems, etc. . 

In general, the technology consists of 1) image 
feature extraction for each image frame and 2) fea- 
t,ure sequence analysis. Since the sequence analy- 
sis depends on feature extraction which can be af- 
fected by the noise and unexpected inputs, bottom- 
up motion-image classifier cannot be robust. If the 
image feature extraction can exploit the feature se- 
quence information, a classifier having top-down as 
well as bottom-up processes can be realized. This 
will improve the stability of the feature e~tract~ion.  

Most of the view based motion-image classifica- 
tion methods [1],[2],[3],[4] are designed based on Hid- 
den Markov Model (HMM): a kind of probabilistic 
automaton. But, the HMM's states are hzdden, and 
hence, the feature extraction mechanism referring 
the current state cannot be embedded. This means 
that  the top-down feature extraction cannot be re- 
alized with HMM. 

In this paper, we propose a motion-image classi- 
fier assuming that each motion-image class'is char- 
acterized by an event sequence, where the event is 
an imaae feature a t  certain time and location. The 

L, 

domain of an event is called focusing region. 

'Address: 3-1-1, Tsushima-NAIiA, Okayama, 700 
JAPAN. E-mail: {twada,kato)Qchino. it .okayama-u.ac. jp 

An example of the event information can be ob- 
tained by the background subtraction. In this case, 
if anomalous pixels fill the focusing regions, the 
event is detected (=I ) ,  otherwise, not(=O). Note 
that the event descriptions are not affected by the 
image variations outside of the focusing regions. 

If a focnsing-region sequence specifying a motion 
image is known a priori and an event is detected a t  
a certain time, successive events can be obtained by 
changing the focusing regions. 

The advantages of this idea are 1) the e w n t  de- 
acrzptzon zs not affected b y  the outlzers and 2) feature 
extractzon zn the focuszng wgzon zs much faater than 
usual one. However, the feature extractor may lose 
track of the event sequence only by this idea. To 
solve this problem, we will introduce multiple inter- 
pretations of an event description. 

The motion-image classifier is composed of inde- 
pendent motion-image identifiers. In section 2, the 
identifier based on selective attention model is de- 
scribed, the classifier is described in section 3, and 
some experimental results are shown in section 4. 

2 Motion-image identifier 
A motion-image identifier is a simple classifier 

which accepts motion images in a specified class and 
rejects those in the other classes. Here we introduce 
an identifier based on selective attention model. 

2.1 Selective attention model 
Select,ive attention model is a successive event de- 

tection scheme. The identifier based on this model 
is driven by events in input images. Since an event 
is detected a t  a focusing region, the region must be 
dynamically changed so as not to lose track of the 
event sequence. 

For the discussion below, the following definitions 
are given: 

Definition 1 (Motion image) The domain of a 
motion image is the spatio-temporal space: T x X x 
Y ,  where T represents the time axis and X x Y the 
image space. In  this space, a motion image can be 
represented as a mapping I ( t ,  x, y): T x X x Y o P ,  
where P represents the set of pixel values. 

Definition 2 (Focusing-region sequence) 
A focusing-regzon sequence zs the subset of spatio- 
temporal space, wh,ich can be represented as f (t): 
T H B(X x I , ) ,  u~h.ere B ( A )  represent.9 the power 
set of A. A focu.sing region is a snapshot o f f  ( t )  at 
a certain time. 



Definition 3 (Event) A n  event i s  a predicate rep- Table 1: State transit,ion at  = qk, wherc qr'j 
resenting the  occurrence of a n  image  feature in a represent's the image sequence is rejected. 
focusing region. T h e  event  of a n  image I wi th  
a focusing region, f can  be represented as  e( f ,  I ) :  
B(X x Y) x Z H (0, I}, urhere Z represents a set  
of images.  

To charact,erize a motion-image class by an event 
sequence, event descriptions for motion images in a 
class are desired t,o coincide. 

Some of the 3-D object motions are restricted 
by fixed objects or articulated objects having fixed 
joint, such as wall, door, desk, etc. In this case, 
common events can be detected by using a focus- 
ing region from motion images in a class taken by 
a fixed camera. But, since apparent motion speeds 
are different in different motion images, events are 
detected a t  different time. That  is, time axes are 
different in different motion images, and hence, the 
spatio-temporal space is not suitable for the event 
description. 

As for the motion images mentioned above, 
common event sequences can be detected with a 
focusing-region sequence by non-linear transforma- 
tions of the time axes, and the following assumption 
can be introduced: 
Assumption 1 W e  assume:  

Ii, I, € fl * 
3~j3 fVt  e(f ( t ) , I i ( t ) )  = e ( f  ( T ~ ( ~ ) ) , I ~ ( T ~ ( ~ ) ) ) ,  (1) 

and for such  f satisfying the  above proposition, 
I k $ f R *  
v ~ k 3 t  e(f (t), I i ( t ) )  # e ( f  ( ~ k ( t ) ) ,  I k ( ~ k ( t ) ) )  (2)  

, where R represents a motzon-zmage c1as.s and r3, 
~k are the  monotonzc functzons o f t .  

In this assumption, the time axis of I, is regarded 
as regulaneed trme and the function T, gives a map- 
ping from the regularized time to the time axis of 
3-th motion image. Hereafter, we will denote the 
regularized time q and the inverse transformation of 
~ ( q )  p(t). Since both T and p are the monotonic 
functions, p , ( ~ , ( q ) )  = q and r,(p,(t))  = t. 

By finding T or p for each motion image, the time 
variance can be regularized. If the regularized time 
q and the focusing-region sequence f (q) are given, p 
can be computed as described below: 

Since p is a monotonic function of t, in a discrete 
form, the following assumption can be valid under a 
dense sampling of t and q. 
Assumption 2 A t  p(t i )  = q k ,  ,(ti+') m u s t  be qk 
o r  q"+' o r  qrej, urhere t i  i s  the  i - t h  sam,ple o f t ,  qk 
the  k - t h  sample of the  regularized time, and qrej the  
t i m e  d o m a i n  of other  motion,-image classes. 

Based on this assumption, a t  pi = ', pi+' can 
be determined by e(f q\ ,Ii) and e(f (qR'),  I i ) ,  be- 

!i ) i  cause an event e(f (q ) , I  ) = 1 represents the evi- 
dence of pi+' = qk, and e(f (qk+'),,I;) = l represents 
the pi+' = qk+', where I' = I ( t E )  and pi = p(ti). 
The combination of e ( f  (q", and e(f (qk++'),  I E )  is 
called event  code. 

Figure 1: r\lot,ion-image identifier 

Definition 4 (State) Q i s  the  ordered set of finite 
s tates  defin,ed as: 

Q = {qO, q l , .  . . , qmr qre'} 
, where qi < qJ if i < j ( 5  m ) ,  a n d &  qi < qrej. T h e  
successor of qi (1 5 i < m) i s  denoted by suc(qi). 

Based on the discussions above, the identifier can 
be defined as below: 

Definition 5 (Motion-image identifier) 
Motion-image identif ier hf = {qO, Q, 6, e, f } can be 
defined as  

{ 
PO = qO, 
,,i+l = 6(p" r i ) ,  

a' = e(f (pi) ,  l i )  . e( f (sue(,')), l i )  
(3) 

,where pi Q and the state transi t ion 6 at pi = qk 
i s  aiven in Tablel .  

This model co~lsists of event sequence analyzer 
and an event detector as shown in Finnrel. Since - 
the event detector changes focusing regions accord- 
ing to  the current state, we call this model selective 
a t t en t ion  model. Note that this model is not deter- 
ministic, because an event code a' = 1 . 1 causes 
a non-deterministic state transition to qk and qk+'. 
This feature rnakes the model robust. 

Formally, this model consists of two major 
components: a non-deterministic finite automaton 
(NFA) having the set of event codes ' C = (0 . 

In this case, the domain of the focusing-region se- 'The event code can be extended as  a' = e(f(p') ,  1 ' )  . 
quence is the space of Q x X x Y ,  where Q represents e(f (suc(pa)) ,  I ' )  . e( f ( S U C ( S I L C ( ~ ' ) ) ) ,  I ' )  . . ., which means the 

the regularized time, i.e., finite set of states defined extension of Assumption 2. This extension is effective for 

below. We call this space event  space. recognizing the fast motion images. 



0,O. 1,l - 0 , l -  1) as its alphabet which can be rep- 
resented as: Q x Y H Q, and the event detector: 
B2(X x k') x Z H 2. The focusing-region sequence 
f (q) gives a mapping:Q H B(X x k') which combines 
these components. 

In most of the state transitive motion-image clas- 
sifiers, the relationship between state and image 
space is not explicitly hold, and the top-down feature 
extraction cannot be realized. But. our method en- 
ables both bottom-up state transit,ion and top-down 
feature extraction exploiting this relationship, i.e., 
the focusing-region sequence f (q) in event space. 

2.2 Learning for anomalous-region fea- 
tures 

As for the anomalous-region features detected by 
the background subtraction, t.he focusing-region se- 
quence can easily be acquired from the anomalous 
regions of motion-images in a class. 

The time axis of anomalous region ai ( t )  ( i  = 
1,2, . . - , n) can be regularized so as to maximize the 
following value: - 

J l 4 q )  n ai(ii(q))ldq 
la(q) u a i (~ i (q ) ) l  

(4) 

,where a(q) is the standard sample of the class and 1.1 
9 8 

representsthe number of pixeli. This normalization 
can be done by the dynamic programming (DP). 

From the renularized anomalous reiions. the - - 
focusing-region sequence f (q) in the regularized time 
q can be computed as: 

n 

i= 1 
This method enables incremental learning which 

can be represented as: 

f l (9 )  = a1(9), 
fi(q) = f i - ~ ( q )  fl a i ( ~ i ( q ) )  

, where a1 (q) is taken as the standard sample. 
This means that the training samples a; ( i  > 1) 

can be abandoned after f i  is computed. 

2.3 Event for anomalous-region features 
Event can be defined for the anomalous-region 

features as 

This definition satisfies e(f (q), I i ( r i (q)))  = 1 for 
training samples. But, in practice, since the training 
samples do not coincide with the inputs, the event 
should be defined as 

0, otherwise 
, where 0 (0 < 0 1) represents a threshold. 

3 Motion-Image Classifier 
The classifier consists of independent identifiers 

Mwi = {q~i,Qw;lbwi.e,  fwiJ (i  = I , . . .  , N). By in- 
troducing an initial state q and es ta te  transitions2 
from q0 to qzi, the classifier can easily be realized as 
shown in Figure2. 

'The c-state transition means a s ta te  transition caused by 
null input. 

Figure 2: r\ilot,ion-imagcb c.lassifier 

(a) NFA (b) Equivalent DFA 
Figure 3: Transformation from NFA to DFA 

Since the classifier also has non-deterministic 
state transitions, it must has multiple current states 
{p". Inputs are classified according to the contents 
of lpk}  as described below: 
OnTheWay: Not enough images have been input. 

((9ZUi @ {pkH A ( 9 2  @ {Pk1)) 
Rejected: The input doesn't belong to the known 

classes. 
v i  ((9ZUi @ {PkH A (9Zj  {pk))) 

Ambiguous: The input can be classified to multi- 
ple classes. 
j i  (((rYi E {pk)) A (3 # i ( q y '  E {pk)))) 

Classified: The input can he classified to wi 

( ( 9 ~ ~  E {P*)) (V.i # i ( 9 7 '  @ {P*}))) 

3.1 Single process implementation 
Since the classifier consists of an NFA and event 

detectors, it can he implemented by the parallel pro- 
cessing, which can consume much of the computer 
resources if a lot of non-deterministic state transi- 
tions are occurred. 

Fortunatelv. the identifier and the classifier can be 
u ,  

transformed into an equivalent deterministic model 
and can be implemented by a single process as de- 
scribed below: 

An NFA can be transformed into an equivalent 
deterministic finite automaton (DFA) as shown in 
Figure3. The transformed DFA has subsets of Q as 
its states. The focusing regions of the event detector 
can be reorganized by the set operation according to  
this transformation. 

4 Experiments 
We implemented the proposed method and ap- 

plied to the classification of two types of human- 
motions a t  a door: "entering" and "exiting" by us- 
ing anomalous-region features, where the threshold 
value to detect the anomalous regions is 20. 



Figure 4: Motion image exanlplc and its a l l o ~ l l i ~ l o l ~ ~  
regions of "exiting" . 

- t1111(' 

Figure 5: Mot,ion image exaniplr autl its anonlalous 
regions of "entering". 

The r~ulnher of motion-irnage sanlples is 16 ("en- 
t,eringV:8, "exitingV:8) and t,he samples consist of 
167 - 319 frames. The class "rxiting" includes mo- 
tion images where objects appear from bot,ll left and 
right sides of the image fra~ne. Also, the class "enter- 
ing" includes human mot,ions t.o left and right sides. 
Motion-image examples of t,liese classes are shown 
in Figure 4 and 5 .  

In this experiment,, 15 samples are used for learn- 
ing, and the resitlual is used as input). In the lrarning 
stage, to suppress the meaningless non-deterministic 
state transition, successive null focusing regions (= 
6 )  a t  head and tail are cut off. Also, to synchronize 
t,he focusing-region sequence with t,he input, a null 
focusing region is added to t,he head of the focusing- 
region sequence, which causes e(q$i, I) = 1 for any 
images. This means that current states always in- 
clude initial states q:i, and hence, initial st,ates are 
neglected in t,lie classification stage. The focusing- 
region sequences are shown in Figure 6 and 7. 

By shift,ing the input and training samples, all 
samples are classified. The classification results for 
event,-code lengths 2 and 3 are shown in Figures, 
where the horizontal axes represent the threshold 0, 
ant1 tlie vert,ical axes number of samples. 

From this figure, we can not,ice that the longer 
event code and lower t,hreshold make the classifier 
rol~ust hut indecisive. But, not,e t,hat the ambiguous 
result can be reclassified int,o "exiting" or "enter" 
by the other criteria, such as t,lle first come, first 
served basis. Based on tliis propert,y of our method, 
one can decide the suitable t,hreshold value and code 
lengt,h for one's t,ask. 

5 Conclusions 
We propostxtl an event tlrive~i  notion-image clas- 

sificat.ion methoti integrating I>ott,orn-up and t,op- 

I rr  hold 11 k i l l  Id 

Event-code length: 2 Event-code length: 3 
Figure 8: Classification Results: A: Correct. B: Am- 
biguous, C: Rejected. D: Misclassified 

down processes, which has tlie following advantages: 
Since focusing regions reduce the domain of fea- 
ture extraction, event detector is not affected by 
the outliers. 
For the same reason. real-tinie motion-image 
classification can he realized. 
Incremental learning of the focusing-region se- 
quence can he performed for training sanlples. 
The classifier consists of idrntifiers which can be 
trained independent ly. This enahles the classi- 
fication with a large nunlher of classes. 
The classifier tloes not produce unique rrsult 
but possible candidates when t,he input is am- 
biguous. 

Our method assumes that tlie moving object,s 
in a class have t,he similar trajectory in the image 
space. In spite of this limitation, our method can 
he used in many surveillance tasks, because in most 
of the surveillance tasks, object niotio~i is restricted 
by fixed objects or articulated objects having fixed 
joint, such as wall. door, tlesk, ... etc. . Howevrr, our 
method cannot be used for position-free motion clas- 
sification. This limitation can he renloved by using 
the background subtraction nietliod with pan-tilt- 
zoom control proposed in [5]. That  is, by controling 
the pan-tilt-zoom paranieters so as to normalize the 
size and location of the anonlalous regions in the 
image space, we can realize the position free motion 
recognition. This will he done in the future works. 
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