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Abstract 
In this paper we apply a new data driven 3D pre- 

diction step for active contour models to car track- 
ing on highways. The so called 3D bounding volume 
(BV) is a coarse 3D representation of a moving ob- 
ject, for which the 2D contour in the image plane 
has been extracted and tracked by active contours. 
By calculating the BV's shape and location in 3D an 
estimation of the object's motion is possible. Thus, 
in contrast to pure 2D tracking of the object's con- 
tour by active contour models knowledge about 3D 
motion is available. This is necessary, if changes in 
the object's contour - for example, due to  rotation 
- needs to be predicted. 

We present experiments in the area of car track- 
ing, which show that tracking the cars by active 
contour models can be improved by the proposed 
3D prediction step. In addition, relative statements 
about the direction of the motion and the velocity 
of the cars are possible. 

1 Introduction 
In the past years active contour models have been 

successfully applied to  object tracking. Despite the 
fact that for object tracking a prediction step is an 
essential part, only few work is known which intro- 
duces a 2D prediction step into the framework of 
active contours. For example, [2] computes a 2D 
prediction based on the normal flow measured at 
the snake elements in the image. [12] proposes a 
Kalman-snake which is capable for tracking 2D con- 
tours. 

There is one main reason for the lack of a 3D 
prediction: For tracking moving contours, a predic- 
tion of an object's contour is only possible if 3D 
knowledge about the object itself is available. Due 
to the fact that active contour models are applied 
to  data-driven tracking no model knowledge is nor- 
mally available. 

In some application a coarse idea about the ob- 
jects is available, without having an explicit repre- 
sentation. For example, so called generic car mod- 
els have been used to track cars in traffic scenes 

Fig. 1: BV for 2D contour prediction: The mappings 
P ,  3-1, and C are formally described in Sect. 2.1 

[8, lO].the explicit parameters of the car model are 
estimated during the tracking itself. Another exam- 
ple is the generic model of humans for pedestrian 
tracking [ l l ] .  This principle is transferred in this 
paper to  active contour models to  introduce a data 
driven 3D prediction step. For data driven tracking 
where no a-priori models of the object are available 
one has to look for a description of the object which 
enables to predict the 2D contour of the object by 
estimating the 3D position and the coarse shape of 
the object itself. The bounding volume of an object, 
which is a well known term in computer graphics, is 
the smallest volume which completely contains the 
object. These bounding volumes can be applied to 
2D contour prediction. The idea is the following (see 
also Fig. 1): Initially extract the contour of the mov- 
ing object by the snake's energy minimization, then 
estimate the parameters of the BV (i.e. the location 
in 3D and its shape), such that the projected contour 
of the BV best matches the extracted active contour. 
Finally, use the computed location and shape in 3D 
to update 3D knowledge about the motion and the 
shape of the object. For the next image the contour 
of the BV is projected into the 2D image plane to 
initialize the active contour. 

In Sect. 2 the approach of 3D bounding volumes 
(BV) will be introduced. We also present the m e  



tion model and the estimation algorithm, which have 
been applied in the experimental part of this paper 
(Sect. 3). There, experiments in the area of car 
tracking on highways show that object tracking by 
active contours can be improved and even relative 
statements about the direction of the motion and the 
velocity of the cars are possible. The paper closes 
with a discussion of the results and an outlook to  
future work (Sect. 4). 

2 Theoretical Background 

2.1 3D Bounding Volume 

Due to  lack of space, we only shortly summarize 
the idea of the BV. A more detailed description can 
be found in [4]. Let M ( a )  be the set of 3D points of 
a BV, parameterized by a vector a :  

The upper left w denotes that  the coordinates 'xi, 
'yi and ' z ,  of the point i refer to  the 3D world. 
These points may be corners, edge points or in gen- 
eral surface points of the BV. For example, for a 
rectangular solid, shown in Fig. 1, a parameter vec- 

T tor a might be a = ( I ,  w, h) , with I ,  w and h be- 
ing the length of the edges of the rectangular solid. 
In general no restrictions for the object's shape are 
made. The rotation R and the translation t map 
the points of M ( a )  to  the set R l l ~ ( a ) ,  which con- 
tains the rotated and translated 3D points of the 
BV. Now, a visibility test must be performed. In the 
literature of computer graphics several algorithms 
can be found (2-buffer, scan-line, raytracing [6]). 
We define a hiding operator 'H, which maps the set 
R , t ~ ( a )  of 3D points into the set RltM'(a) of visi- 
ble 3D points. Now, the set R x t ~ ' ( a )  C R~ will be 
projected onto the image plane b perspective pro- 
jection P . The result is the set J tMb(a)  which is 
equal to  the 2D image of the BV's points. Finally, 
an operator C will compute the visible 2D contour 
of the BV, which leads t o  a set of points RltCp(a) 
in R2. These points need to  be transformed to  a 
sequence of points (ci)15i5m, with ci E RltCp(a), 
ordered counterclockwise t o  form a representation of 
this contour. 

In Fig.1 all steps of this approach are summa- 
rized. The mappings 'H and C are time critical for 
real-time experiments. By taking as BV the spe- 
cial class of convex polyhedra these both mappings 
can be done by projecting the corners of the convex 
polyhedra into the image plane and calculating the 
convex hull of these points. This computation is ob- 
viously less time consuming and can be applied t o  
real-time problems. 

For two contours (ci)l<i<m and ( ~ ; ) l < j < ~  a dis- 
tance function d i ~ t ( ( c ~ ) ~ ~ i < ~ ,  ( ~ i ) ~ < j ~ n ) ,  for exam- 
ple 

van 
truck 

Tab. 1: Parameters of the BV for different cars 

= C m j n { l ~ i - c i I )  + C m i n { l c i - c i l )  ( I )  
i=l  j=1 

c ,  

is defined. This function measures the correspon- 
dence of two 2D contours. Now, for a given active 
contour (cijlljSn and a parameter description of a 
BV, the parameters R ,  t and a can be computed by 

where ci E R l t ~ p ( a ) .  The minimization in (2) re- 
sults in the parameters R , t  and a of that BV, the 
contour of which best matches - in the sense of 
equation (1) - the active contour. Of course, am- 
biguities especially for the parameter R may occur 
(the Necker illusion); in that  case, local minima may 
be reached. The experiments will show, that  theses 
local minima are no problems for the prediction of 
the contour. To  calculate the parameters R, t and a 
we use stochastic optimization techniques described 
in [5]. 

After this step we have a 3D estimate of the mov- 
ing object's BV. The  only knowledge which is needed 
for this step is a parametric representation of the 
BV, which has t o  be chosen in advance. In our ex- 
periments (see Sect. 3) we have taken a rectangular 
solid. 

2.2 Motion Model and Prediction 

With the algorithm presented in the previous sec- 
tion we can calculate for each 2D active contour the 
shape and location of a BV, which 2D contour best 
matches the active contour. Now, in the case of 
image sequence processing we get for each image 
f(x, y , t )  the parameters R( t ) , t ( t )  and a ( t ) .  Thus, 
an estimation of the shape parameters and the mo- 
tion of the BV in 3D is possible. Usual approaches 
can be found in estimation theory [I]. 

Despite the fact, that  the parameter vector a of 
the BV can also be estimated as described in the pre- 
vious section, we use for the experiments only three 
different parameter vectors a .  This reduces the com- 
plexity of the search space. The parameter vectors 
correspond t o  three different types of vehicles (car, 
van, and truck) and have been determined heuristi- 
cally and fixed in advance. The  relative parameter 
values can be found in Tab. 1. It is worth noting, 
that  these values are only coarse estimations. 

For the motion model we apply the discrete-time 
model of a constant-velocity target [I]. The state 
of the target (position, velocity) is estimated by a 
Kalman-Filter. 



Fig. 2: Results for tracking cars on a highway: the 
first and the last image of a sequence of 124 images 
are shown. First row: the extracted active contours. Fig. 3: Tracking a car approaching the observer by 

Second row: the estimated BV. the BV. Even the pose estimation is correct. 

3 Experiments and Results 

3.1 Experimental Environment 

We have tested our proposed method on highway 
image sequences (one example is shown in Fig. 2). 
This data set contains 10 sequences, each with a 
length of approximately 100 - 200 images. For the 
first image, each active contour is initialized inter- 
actively on the corresponding moving vehicle. This 
is due to the fact that we have no knowledge about 
the movement of the camera and are thus not able to  
estimate independent motion in the image. An au- 
tomatic initialization in the case of known camera 
motion has already been proposed in [9]. 

Then, tracking is done with active contours with- 
out anv vrediction stev. We use an active contour 
model, which is based' on the original approach of 
[7] and which has been modified to  fulfill real-time 
constraints [3]. 

The image seauences. which have been used in " 
this paper, are very difficult to  process with active 
contour models. The reason for this is that there 
are background edges near the object (other vehi- 
cles), weak object contours (very low contrast), and 
large displacement of the vehicle in the image plane 
(especially for vehicles approaching the observer). 
Thus, normally the active contour looses the mov- 
ing vehicle after some images. 

Once the active contour has lost the object, the 
second experiment starts. As long as the estima- 
tion error of the Kalman-Filter is above a certain 
threshold, tracking is done without the prediction, 
i.e. initialization of the active contour. After the 
Kalman-Filter error is below the threshold, the pre- 
diction step by the BV is activated, for which the 
location in 3D has been already estimated and up- 
dated during the previous images. Then, for each 
new image the 3D location of the BV is predicted 
and its 2D contour is projected into the image plane. 
This 2D contour is used to initialize the active con- 
tour, which extracts the object contour by the nor- 
mal energy minimization. 

Fig. 4: Tracking a truck approaching the observer. 

In our experiments a total number of 13 vehi- 
cles have been tracked. The average number of im- 
ages, in which a vehicle has been visible, is 98 im- 
ages. Without any prediction only one sequence has 
been completely tracked without an error. With the 
proposed 3D prediction step, we were able to  cor- 
rectly track the vehicle over the whole sequence in 
6 of the 13 sequences. The average number of im- 
ages, in which a vehicle could be tracked, was 28 
images without prediction and 46 images with the 
prediction step. For one sequence neither with nor 
without prediction step the vehicle could be tracked. 
The reason is, that there is a very low contrast in 
the image and the distance to the vehicle is large, 
which results in a very small object contour. It is 
well known that for such kind of image data active 
contour models are not suited. 

In the following we will illustrate the advantages 
of the algorithm. As one can see in Fig. 2, the RV 
does not correctly model the real 3D position of the 
vehicles. Nevertheless, the computed 2D contour of 
the BV, which is taken as initialization of the active 
contour for each new image, is precise enough to 
track the object correctly. 

In Fig. 3 and Fig. 4 two example sequences are 
shown, for which the tracking without 3D prediction 



fails. Even if the large displacement of the contour 
in the image plane could be estimated, the simul- 
taneous growing of the contour cannot be predicted 
without a 3D model. As one can see, with the BV 
prediction step, the vehicles can be tracked correctly. 

In Fig. 5 the estimated relative distances for the 
three vehicles (the van, the tanker, and the truck) 
are shown. No absolute 3D position can be com- 
puted, because no exact model for the vehicles and 
no calibrated cameras are available. But as one can 
see, the relative change in the distance corresponds 
to  the movement of the camera towards the three 
vehicles. 

Fig. 5: Estimated relative distance of the three ve- 
hicles (see Fig. 2) to  the camera over the image se- 
quence by means of the BV. The change in distance 
corresponds to  the movement towards the vehicles. 

4 Discussion and Future 

In this contribution we have shown, that the pro- 
posed prediction method for active contour models 
is well suited to  improve the performance of a da ta  
driven tracking. Weak object contours, large dis- 
placements of the moving object and sudden loss of 
the object can be handled. The BV itself of course 
cannot be taken as an exact representation of the 
moving object, i.e. the BV does not always model 
the real shape of the object. Nevertheless, the rel- 
ative motion (in this case the shrinking or growing 
distance), which is the necessary information for a 
prediction step, is always modeled exactly. With 
this information statements about the motion direc- 
tion and velocity of the object can be made, which 
is impossible without a 3D estimation. 

Up to  now, there are several problems. The ini- 
tialization of the Kalman-Filter parameters is a very 
difficult task. Thus, if the active contour cannot 
track the object without prediction sufficiently long, 
the Kalman-Filter may not be in steady state, and 
thus predict a wrong motion. In that  case, as for 
each wrong initialization of the active contour, the 
object gets lost. 

A second problem occurs, when the active con- 
tour slowly looses the object's contour. Then, the 
Kalman-Filter will predict an increasing distance of 

the object (due to  a shrinking contour) or some ro- 
tation of the BV, which is not correct. As a result, 
a wrong contour is predicted and the object cannot 
be tracked any longer. 

In our future work, we will also estimate the shape 
of the BV during the tracking, instead of using fixed 
values. Futhermore, some other motion models of 
the cars will be tested. 
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