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Abstract 

SIMD linear processor arrays (LPAs) have re- 
ceived a great deal of interest as a suitable parallel 
architecture for image processing. However, few pos- 
sess a high level programming environment support, 
and tlie range of image processing tasks which can 
be efficiently i~nplenlented is unclear. In this paper, 
we first describe a data  parallel language succinctly 
designed for a virtual LPA, and also a compiler for 
an existing LPA. Next, we provide a guideline for 
pamllel SIMD linear array algorithm developnlent 
using the language. The guideline is consisted of 
five hasic parallelizing methods, I>y using which effi- 
cient implementations are shown for each category of 
low to intermediate level image operations. We also 
suggest that further improvement of performance on 
LPAs can be acliicvcd, I>y architectural supports for 
reducing the control overhead of some parallelizing 
methods. 

1 Introduction 

SIMD linear processor arrays (LPAs) have re- 
ceived a great deal of interest as a suitable parallel 
architecture for image processing [I]-[3]. However, 
when focusing on the software environment,, few pos- 
sess a liigli level progranlming language support. Al- 
though some pamllel image processing algorithms 
have hecn proposed thus far[9]-[11], currently there 
is a lack of a clear idea to what extent can paral- 
lelism be exploited for image tasks by using LPAs. 

In this paper, 1DC (One Dimensional C), a suc- 
cinctly defined data  parallel language which sup- 
ports a virtual LPA, and a 1DC compiler devel- 
oped for an existing LPA, IMAP-VISION[4], are first 
described. Then, for the categories of low to in- 
termediate level image operations, a guideline for 
their parallel SIMD linear array algorithm devel- 
openlent using 1DC is provided. The guideline is 
consisted of five basic parallelizing methods: row, 
colum,n., rour-systolic, slan,t-systolic, and stack-based. 
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Furthermore, overheads for some of the paralleliz- 
ing methods are discussecl and compared; based on 
which future subjects for further improving the per- 
formance of LPAs for a wider variety of image pro- 
cessing tasks are suggested. 

2 1DC Language Features and its 
compiler for IMAP-VISION 

1DC is designed as an enhanced C language, with 
the enhancement limited only to essential necessities 
for the sake of clarity, and also for the support of 
a virtual LPA (which is descril>ecl in the beginning 
of section 3). The enliancement of 1DC from C is 
straiglitforward: (a)  extended tleclaration of enti- 
ties which associated to the P E  array, (I>) extended 
constructs for selecting active processor groups, and 
(c) extended operators for manipulating data on the 
P E  array. 

Entities are declared as either sep (or separate) 
and associated to the P E  array, or scalar and is 
associated to the central controller. Each sep en- 
tity represents a linear array of scalar data  where 
each element of which resides on the correspond- 
ing PE. Extended constructs for selecting active P E  
groups partition tlie PEs into two sets, where the 
first set is composed by PEs that verify the pretl- 
icate of the construct, and the second set is com- 
posed by all other remaining PEs. These constructs 
are given a preceding m for their notation such 
as maf. . .[melse. . .], murhrle. . ., and rnfor(. . .;. . .;. . .), 
where the only difference from standard C is the 
predicate must be a sep expression. 

In the same way, extended operators are given 
a preceding colon for their notation. Assuming 
cO,. - .,cn as constants, Esep and E,,, respectively 
as a sep and a scalar expression, : ( cO,. .,cn : ) rep- 
resents a sep constant with value cO,. . -,cn on the 
Oth,. . .,nth P E  counting from the leftmost in a LPA; 
"Esep: [Esca :I" extracts the scalar element of E,,, 
on the E,,,th PE;  " :>Esep" and " :<Ese," respec- 
tively refers to the scalar element of Eaep located a t  
its left and right adjacent PEs; finally ":&&Esep7' and 
":IIEsep" respectively produces a scalar entity whose 
value is the logical AND and OR of every scalar el- 
enlent of E,,,. 

Currently a 1DC compiler has been developed for 



IMAP-VISION[4], a highly integrated single-board 
LPA with 256 PEs. Fig.l(a) shows the current pro- 
gramming environment for IMAP-VISION based on 
1DC. Due to the succinct language design and t,he 
RISC like instruction-set of MAP-VISION, the 1DC 
conlpiler has achievetl codes competitive with liand- 
written asseinbly codes (Fig.l(b)). The compiler can 
also produce C source codes for running 1DC on na- 
tive PCs and workstations. The X window based de- 
buggers provide not only both assembly and source 
level clehugging facilities, but also provide function- 
alities sucll its interactive varial~le acliustment which 
is useful for parameter t,uning in real-time image ap- 
plications. 

1 DC source program 
1 prepmccswng 

1 DC Compiler 

Assembler 
optunizatlon 

gmuplng 

a X window based uhlrtres 

(a)The IMAP-VISION programming environment 

(Image size 256x256, using IMAP-VISION in 40MHz) 

(b) Some evaluation results 

Figure 1: 1DC Programmiilg Environment 

3 Efficient Implementation of Image 
Processing on LPAs 

Low and intermediate level image operations can 
be classified into some categories (Fig.2, partly 
based on [5]). In this section, we provide a guicleline 
for parallel SIMD linear array algorithm develop- 
ment using 1DC. 

Our target maclline is a virtual LPA (Fig.3). 
The source and destination image sizes are 110th 
NROW xNCOL where NCOL is equal to the number 
of P E  (PENO). Thus, each image column is mapped 
onto a different PE,  and is stored in the PE's lo- 
cal memory. All PEs are controlled by a central 
controller, which perfornls instructioll broadcast, se- 
quential access to any address of tlie local memory of 

Local Neighborhood 
Point Operation (PO) Operation (LNO) Global Operation 

Geometric 
Operation (W) 

Recursive Neighborhood 
Cueration (RNO) 

Region Operation (RO) 

Figure 2: Low and intermediate level image process- 
ing categories 

any PE, and also status information reduction (re- 
ceives the logical OR or AND of status signals from 
all PEs). Each P E  can perform access to  different 
local inenlory address (indirect addressing facility). 
Interconnections exists only between adjacent PEs, 
while the leftmost P E  is connected to the rightlnost 
PE. 

Figure 3: Arcllit,ecture of a virt,ual LPA 

3.1 Point Operation (PO) and Local 
Neighbourhood Operation (LNO) 

Both P O  and LNO are tlle basic parallel pixel(s)- 
to-pixel transformation process betureen source and 
destination images. The straightforward parallel im- 
plementation for P O  and LNO on LPAs is to  operate 
on each image row (NCOL pixels) simultaneously by 
all PEs, and is repeated NROW times. Hereafter 
this basic method is referred to as row method. 

The 1DC description for the 3 x 3  average filtering 
operation ( a  typical LNO), is given in the following. 
The sum of eacli local 3 x 3  pixels are obtained by 
combining the sum of three 1 x 3  pixels produced by 
each P E  with the result of its two adjacent PEs. 

sap unsigned char  srcCNROWl ,ds t  [NROW] ; 
v o i d  average-f  i l t e r o  

'sep unsigned int  acc; 
i n t  i; 



for(i=l; i<NROW-1; i++)C 
acc = src[i-11 + src[i] + src[i+l]; 
acc += (:<act + :>act); 
dst [il = (acc / 9); 

1 

3.2 Global Operation (G10) and Geo- 
metrical Operation (GeO) 

G10 is mainly used for gathering information 
from pixels in order to  produce a single value or a 
vector of values as the result, while GeO is mainly 
used for repositioning pixels. On LPAs, both G10 
and GeO can he efficiently achieved by first letting 
all PEs simnltaneonsly perform vertical and then 
horizontal data  transfer, or vice versa. Vertical data 
transfer can he achieved by using the indirect ad- 
dressing niecllanism which enables eacli P E  simul- 
taneously access a pixel value in each different row. 
Horizontal data  transfer can be achieved by utiliz- 
ing the P E  interconnectio~i to  simultaneously shzft 
up to SCOL data  in a fixed (left or right) direction. 
By using lDC,  vertical data  transfer is expressed by 
using sep entities as array indexes, and llorizontal 
data transfer is expressed by using a sep entity as 
the source and as well the destination operand of 
the : > or : < operator in a loop. Hereafter the for- 
mer is referred to as column method, mcl the later 
is referred to as roui-systolrc method. 

In the following, the 1DC description for the ini- 
age histogram calculation (a  typical GlO), is given 
as an example for ixnplenienting GlOs on LPAs. The 
original algorithm can be found in some where like 
in [9]. First, based on the co1um.n method, each PE 
generates in its local xnelnory ( a  column-wise his- 
togram array), whose starting address differs in a 
regular way according to  each P E  number. Next, 

Example of a column-wise histogram for a PE 

sult 

the number g (g=0 ... 3) written in the figure shows the place 
where the histogram result for pixel value g should be stored 

Figure 4: Row systolic operations on column-wise 
llistograxns for a 4x4 image on a LPA with 4 PEs. 

in tlie following (tlie original algorithm is from [lo]). 
By performing consecutively tlle following 1) - 3), 
tlie source image is rotated 90 degree as sl~own in 
Fig. 5: 1) a P E  number dependent vertical sllift of 
each image column (based on tlie column metliod), 
2) a row number dependent horizontal shift of each 
image row (1)ased on t,lie rout-systolic methotl), and 
filially 3) a P E  number dependent vertical sllift of 
eacli image column. The performance of this 1DC 
description is 0.58 msec, a3 shown in Fig. l (b) .  

void rotate90(srcstbl) 
sep unsigned char srcn . tbl ; 
C 
int i ; 

/* vertical shift */ 
for(i=O;i<NROW; i++) tbl[(i-PENUM)&255]= src[i] ; 

/* horizontal shift */ 
for(i=O; i<NROW;i++) tbl [i] = tbl[i] :< (PENO-i) ; 

/* vertical shift */ 
for(i=O;i<NROW;i++) src[i] = tbl[(i+PENUM+l)k255]; 

> 

0 5 g 5 255, is ol~tained on tlie PE wliose PE num- 
ber is g. Fig. 4 illustrates briefly the above summing 
sequence, using a LPA with only 4 PEs aiid a 4 x 4  
sized source image for brevity. Not,e t h t  in the fol- 
lowing 1DC description, PENUM is a pre-defined sep 
const,ant equal to : ( 1,2,- . -, P E N 0  : ). Tlie per- 
formance of this l D C  description is 0.12 msec, as 
sllourn in Fig. l (b ) .  

sep unsigned char srcCNROW] ,hst [256] ; 
sep unsigned int histogram0 
1 
sep unsigned int result=O; 

/* column-vise local histogram generation */ 
for(i=O;i<NROW;i++) hst [(src[i] - PENUH)k2551++; 
/* summation of column-wise histogram results */ 
f or(i=O; i<NCOL; i++) result= : <(hst [i%256] + result) ; 
return(result1; 
1 

Tlie l D C  description for the 90 degree rotation (a  
t,ypical GeO), ha--ed on t,he use of t l ~ e  conihination 
of cohl.m.n m.ethod and row-systolic m.eth,od, is shown 

the orlglnal Image 1st verl~cal hor~zontal shlfi 2nd vert~cal 
(array src) + shift (array tbl) + (array tbl) + sh~ft (array src) 

Figure 5: 90 degree rotation of a sample image 

3.3 Recursive Neighbourhood Opera- 
tion (RNO) 

For updating each pixel, RNOs refer the pixel 
value of its neighhourhood pixels which have already 
been updated. In consequence, for RNOs constraiilts 
exist in pixel updating order between eacli pixel 
and its neigl~l~ourliood pixels. However, as tlie con- 
st,raints are in most cases static, they are expressil~le 
as a recursive mask such as those shown in Fig. G(a). 
Among Fig. G(a), A and B are t,lie t,ypical recursive 
masks for respectively left-top to right-bottom and 
right,-bottom to left-top raster scan operation, the 
most frequently used RNOs. 



A parallelizing nietllotl called s1nn.t-systolic is pro- 
posrtl licrr for efficiently implemcnt,ing RNOs on 
LPAs, In slnn,t-systolic nietliod, P E s  are activat,ccl 
successively ill a fixctl tlircction, wllile each act,ivat,ed 
P E  uptlates tlie corresponding pixel aft,er every fixed 
t,imr interval. As a result, a slant pixel-updating- 
wave is generatetl, whose slant angle is in propor- 
t,ioli t,o tlie fixetl t,ime interval. For N 2 2, it takes 
N x (NROW-l)+NCOL iterations for a (2N-1) x N 
sized rccnrsivc nlask, ant1 Nx(NC0L-l )+NR.OW it,- 
crat,ions for a N x (2N- 1)  sizetl recursive mask, t,o pro- 
ceetl t,llc ~)ixel-~~~tlatilig-~va~~e from one corner t,o t,lie 
opposite corner of tlie inlage (Fig.G(b)). Note tliat 
t,lle fixctl tinle ilitcrvals are 1,otli X-1. 

Tlie l D C  tlcscription for tlie forward scan of the 
t,wo-sca~i tlist,ance transform(G], a RNO wliicli uses 
t,llc rccrlrsivc niask A and B (Fig. G(a)), for t,lle 
forwartl ant1 t,lie hack~vard scan, is shown in t.lie fol- 
lowilig. Two sep entities, s ant1 y are used, wliere s 
is for l)rol~agatilig an  activation signal from t,lic left- 
nlost P E  to  the riglitmost PE.  Each P E  to  wllicli 
tlic siglial lias arrivetl, s tarts  t,o increase y in every 
itcrat,ion. Ho\vever, tlic P E  ~~p t l a t , e s  the pixel a t  po- 
sit,ion ?//2 only 1i711e11 y is an  even nunlber in order to 
ohserve the  t,inle int,crval imposed by tlie recrlrsive 
mask A (for the above case the  t,inle ilit,erval is one, 
as N et111aIs t,o two). 

s e p  unsigned char img[NROW]; / *  source  image */ 
# d e f i n e  D 3  /* 8-nbh d i s t a n c e  */ 
# d e f i n e  S 2 /* 4-nbh d i s t a n c e  */ 
Xdefine min(a ,b)  ( ( ( a ) > ( b ) ) ?  (b) : ( a ) )  

v o i d  d t c s e p  unsigned char y ,  s e p  unsigned char in[]) 

' s e p  unsigned char p l , p 2 , p 3 , p 4 , p 5 ;  

p i =  : > i n [ : < y - 1 1 ;  p2= in[y-11;  p35 :< in[ :>y-11;  
p4= : > i n [ : < y l ;  p5= i n [ y l ;  
re turn  min(min(min (p5 ,pl+D) ,min(p2+S ,p3+D) ) ,p4+s)  ; 

> 
void  s l a n t - s y s t o l i c - m e t h o d 0  
I 

i n t  i .  
s e p  ir;t s , y ;  
f o r  (y=O,i=O; i<  2*(NROW-l)+NCOL; i + + )  ( 

s : [O:]  = 1 ;  
mif ( s  && (y++ &1)==0) 

d t ( y > > l  ,img) ; 
s = : > s ;  

> > 
Note that ,  tluc to the  prescril~ed time interval, for 

RNOs using a (2N-1) x (2N-1) sized recursive mask, 
1111 t o  N s~icccssive pixel-~lptlating-\vaves can 11e im- 
plcnicntetl ill ail ovcrlapl>ctl way (Fig.G(c)) wit,h 
sonic niinor niotlification of the a l~ove 1DC program 
inclntling 1)rcl)i~rilig X sets of s alltl y. 

3.4 Region Operation (RO) 

Olir of tlic frequclitly used procedure in image 
processing is segnielltatioli. After performing seg- 
mentation, usually variorls regiolls with arbitrary 
sizes ant1 slial>cs are found ~vitllin tlie image. R O  
call 1)e usctl for visiting sollle or all pixels of each re- 
gion intlcpentlrntly, ill ortlcr to  protluce a vector of 
results wliose elcnielits eacli of wliicll c o r r e ~ p o n d ~  to  

pixel 0 is updated by using the value of pixel 
A) 1,2,3.4 8) 5.6,7.8 C) 2,4 D) 5.7 

which were updated in the prevlous ~teration. 

(a) Recursive mask examples. 

target 

"" f' 
pixel 

2N- 1 

NXINROW-1) + NCOL NX(NC0L-1) A NRnW 

(b) Row (left) and column direction (right) 
pixel-updating-waves. 

Ihe  overlapped row direction (left) and 
column direction (right) pixel-updating-waves (N=3) 

N successive pixel-updating-waves can proceed 
in an overlapped way either in row or column direction. 

(c) Overlapping pixel-updating waves 

Figure 6: Implementation aspectas of the s1nn.t- 
systolic metllotl for R S O s  

eacli region. Tlie feat,ure of R O  is t,liat, ulilike ot,lier 
image operation cat,egorics, source pixels are now 
scatt,ercd and locat,ed witliill specific regions. eacll 
being separat.ed 11y non-source pixels. Furt~llcrnlorc, 
pixels wit,l~in a region nlay be uptlatetl in p;~rallcl 
(PO,  LNO, GeO, or G I 0  wit,liin rcgiolis: prr.mlle1 
RO), or constrailits nlay exist in t,lle uptlatillg or- 
der of eacli pixel ill tlie region (R,NO wit,liin rrgiolis: 
sequential RO), or even pixels which licetl t,o be up- 
dat,ed may change dynamically ( R O  within regions: 
dyn,nm,ic RO). Examples for parallel R 0  are erosion, 
dilation, relaxat,ion scl~elllcs (such as Snakcs[8]). Ex- 
amples for sequential R O  are contour tracing, dis- 
t,ance transform, and a t,ypical example for dyn.amic 
R O  is skeletonizat,ion or thinning. Note that,, d?j- 

n,n.m.ic R 0  is not furt,ller tliscussed in t,liis paper clue 
to  space limitation. 

Usually ROs are colisitlcretl as illtcrmctliatc level 
image operat,ion, ant1 liave liot Ixcn efficiclitly in1- 
plementetl on LPAs t,lius far. Illstcad, tlie idea of 



parallelizing the imple~nentation of R 0  has been to 
use a SIMD-MIMD llierarchy architecture, and as- 
sign the operat,ion for each region to each MIMD 
processor. Ho~ivever, we propose in the following a 
parallelizing technique called stack-based method, by 
which efficient implementation of ROs on LPAs can 
he achieved to a large extent. 

The stack-based method is consisted of two pro- 
cessing phases during each of wllicll every P E  of the 
LPA simulates a software stack in it,s local memory. 
In tlle first processing phase (the seed pixel detection 
phase), all pixels are visited once I>y row method in 
order t,o fincl a t  least one specific feature pixels (such 
as contour or peak point pixels) for each region, and 
push each po i~~t ,e r  of the featmure pixel into t.he stack 
top of t,lle P E  which possess the pixel in its local 
memory. In t,he second processing pllase (t,he p ~ ~ s h  
and pop pllase), 1 )  for each P E  whose stack is not 
empt,y, pop t,llc pixel pointer a t  tlle stack top and 
perforin t,lle R 0  specific operation upon the pixel 
point,ecl hy the point,cr (the focwed pixel hence); 2) 
for each neigl~bonrl~ood pixel of t,he focused pixel 
whicll satisfies t,he RO specific condit,ion (the pu.sh 
condition hence), pus11 its pointer to t,lle st,ack t,op 
of t,lle PE wllicll possesses it in its local memory; 3)  
continue 1)  - 2) unt,il all P E  st,acks are empty. 

The 1DC description for the above procedures 1)  - 3) are shown in the following, where I sSeedO,  
Pixel-op ( 1. and Push-nbh-ptrs (1 are RO specific 
functions. 

void stack-based-method(sep int stack0, sep int imgC1) 

' int i; 
sep unsigned char sp,x,IsSeedo; 
void pixel-op(), push_nbh-pixelso ; 

for (i=O; i<NROW; it+) /* seed pixel detection */ 
mif (IsSeed(i)) stack[sp++]=i; 

mvhile ( : l lsp) { /* push and pop */ 
x = stack[--sp] ; 
Pixel-op(x, imn) ; 

Parallel RO Sequential RO 
(case for contour tracing) 

The maximum number of pixels Maximum trace length 
one PE results to process dominates the total 

(ex. p+q pixels in the above figure) processing time 
jominates the total processing time 

Figure 7: Performance  aspect,^ of the stack-based 
method for ROs 

each pixel-upclating-wave differs, as the control over- 
llead for proceeding each wave forward an unit pixel 
distance is different between parallelizing methotls. 
Control overllead is less for rour, column, and rour- 
systoltc metllods tllan for slant-s?~stolzc and stack- 
based methods. Generally control overhead for 
stack-based method is larger than that for slant- 
systolic method, a.5 dynamic propagation and detec- 
tion of region pixels performed by the former are 
usually a heavier task than static sclleduling of the 
pixel processing order performed hy the later. 

row column row-systolic 
I 

P0,LNO GIO, GeO - 
Push-nbh-ptrs(x); 

> > slant-systolic - 
By providing propcr push condition for each RO, 

only pixels 1,elonging t,o the same region as the fo- 
cused pixel, and together pixels which really need 
to  11e processetl, are ident,ified and pushed into P E  
stacks, antl tlllls 1,eing processed. As a result, for RNO 
parallel ROs,  the maximum number of pixels wllicll 

stack-based 
I 1 

. - 
has to he processed by a PE,  and for seiuential ROs  
such as contour t,racing, the maximum numl~er of 
pixels contai~led in a t,race, donlinates t,he process- Figure 8: Pixel-updating-waves for each basic par- 

ing t h e  of tlle entire RO (Fig. 7).  allelizing method 

By taking into account the control overhead de- Overhead Estimation scribed al,ove, selection can he made between stack- 
ing Methods on LPAs based and row met,liod for parallel RO,  or betwecn - 

stack-based and slant-systolic method for sequential 
Each of tlle five basic parallelizing methods de- R O ,  according to tlle sizes of regions to he processed. 

scril~ed in t,lle previous section result,s t,o provide a Tlle control overllead of the stack-based met,llod is 
pixel-uptlat,ing-\17a\re t,llat sweeps tllrougll the ent,ire now trading off with the structural overhead, that, 
source image or all regions within tlle source im- is, the overhead for rour or slant-systolic nlet,llod t,o 
age (Fig. 8). However, t,he d i r e d o n  and speed of operate on unnecessary pixels (pixels not belonging 



to any region), and to neglect the discovery of other 
ready pixels (pixels wliicli have already fulfilled the 
i~nl~osccl pixel updating order constraints). 

Table 1 sliows tlie processing times on IMAP- 
VISION, using respectively stack-based and slant- 
systolzc metliotl, to perform the previously described 
two-scan distance transform, a RNO and together 
a sequentzal R 0  if regarding groups of foreground 
pixels as regions. Programs are written in 1DC. 
Tlie four 256x256 test images being used have a 
gradually iiicreasiiig region sizes. Tlie RO specific 
functions used for tlie stack-based implementation 
of the forward scan part of the distance trailsforin 
are shown in 1DC in the following as an example. 
Xdefine P o ~ e d  0 -.--- - 

Xdefine fiAished 1 
Xdefine Pushed 2 
sep unsigned char ImgCNROW] ,Tmp[N~oWl ,Stack[NROW/2] ; 

sep unsigned char IsSeed(int i) 
4 

sep unsigned char r, IsContourPixel~) ; 

mif (Imgci]) TmpCiI = Poped; 
melse TmpCi] = Finished; 
mif (r=~sContourPixel(Img,i)) Tmp[i] = Pushed; 
return r; 

> 
/* use d t 0  as Pixel-op0 */ 
Xdefine Pixel-op(x,img) dt(x,img) 

void pnbh4(sep unsigned char x) 

' sep unsigned char a,b,c,d,e; 
a= :>Tmp[:<x-l];b= Tmpcx-l];c= :<Tmp[:>x-11; 
d= : >Tmp C: <XI ; e= Tmp [x] ; 

mif ((e==Poped) kk (a k b t c k d)==Finished)){ 
Stack [ss++] =x;  
Tmp[x] = Pushed; 

> > 
void Push-nbh-ptrs(sep unsigned char x) 
I 

pnbh4(:>x); 
pnbh4( : <x+l) ; pnbh4(x+l) ; pnbh4( :>x+l) ; 

> 

( method ( image1 1 image2 ( image3 I image4 1 
I stack-based I 4.8111s I 6.lnls I 7.9ms I10 . lms  I 
I slant-svstolic I 8.0ms I 

Table 1: Processing time of two different paralleliz- 
ing mctliods for the distance transform operation 

According to Table 1, as the region sizes grow, the 
control overhead of the stack-based rlietliod gradu- 
ally overconies the structural overhead of tlie slant- 
systolic met.1iod. This result implies architectural 
subjects of LPAs for reducing control overheads pro- 
tlucctl 11y tlie parallelizing methods, especially those 
procluced 11y the stack-based metliod. A11 even het- 
ter perforinance for ROs on LPAs can he achieved 
if the subjects can he adequately solved in tlie near 
future. 

5 Conclusion 

In this paper, a da ta  parallel language succinctly 
designed for a virtual LPA, and its compiler for an 
existing LPA, are first described. Then, a guide- 
line for parallel algorithm development using the 
language, which consists of five basic parallelizing 
method: row, column, row-systolic, slant-systolic, 
and stack-based, are provided. Each category of low 
to intermediate level image operations has sliown to 
he efficiently implemented on LPAs using each or 
a co~nhination of the parallelizing methods. Fur- 
thermore, overhead produced by the two paralleliz- 
iiig methods, slant-systolic and stack-based, are dis- 
cussed and compared. A conclusion is that, further 
improvement of performance on LPAs for region op- 
erations can he achieved, hy architectural  support,^ 
for reducing the control overhead of the stack-based 
metliod. 
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