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Abstract 
In this paper, a new method for designing modularized 

vision systems using a distributed cooperative 
architectures was introduced. In this method, the target of 
vision is defined in advance using a set of parameters, the 
relations between which are determined by primitive 
function-based vision modules. The parameters 
themselves are determined simultaneously by running 
these vision modules under a cooperation mechanism. 
Using this architecture, three types of vision system were 
actually implemented and tested. The results 
experimentally verified that vision systems designed using 
the proposed method work successf%lly. 

1. Introduction 
There are high hopes for vision systems that generate a 

"workspace maps[l][2]" for use in rationalizing 
production, construction, and maintenance work. The 
workspace map is a dynamic data set describing three- 
dimensional arrangement of objects in the workspace, and 
is used for intelligent navigation of mobile robots, 
strategic planning of object handling, and dexterous 
manipulation of robot hands. 

From a practical point of view, the vision system 
construction is determined by its application to the 
practical systems. That is, the number of imaging devices, 
the type of imaging devices, and their geometric 
configuration are designed considering the required 
accuracy, the degree-of-freedom of the object location, 
and the application task. Therefore, a number of specific 
vision systems have been developed for every practical 
applications. However, it is not efficient to develop each 
new vision system in a from-scratch manner. A 
constructive design method is needed that will allow 
designers to reuse resources developed in other 
application systems. 

This paper proposes a new method for designing 
modularized vision systems using a distributed 
cooperative architecture. With this method, the target of 
vision is defined in advance using a set of parameters, the 
relations between which are determined by primitive 
function-based vision modules. The parameters 
themselves are determined simultaneously by running 
these vision modules under a cooperation mechanism. 
Using this method, any desired vision capability can be 

obtained, simply by combining these primitive vision 
modules. 

In related work, Henderson has provided a 
programming paradigm for sensory information 
processing (the logical sensor concept[3]), and Brooks 
has proposed a subsumption architecture for evolutionary 
development of visuomotor systems[4]. However, in 
these works, the information fusion process is not made 
clearly in constructive style. 

2. Distributed Cooperative Architecture 
The architecture of vision systems can be categorized 

into hierarchical architectures[5] and parallel 
architectures[4]. Though the former are good for 
obtaining the high-level information of the environmental 
map, it is generally difficult to divide such systems into 
separate reusable vision modules. On the other hand, the 
latter are good for modularization, but it is generally 
difficult to build high-level information from their simple 
vision functions. Considering this problem, we introduced 
a distributed cooperative architecture which is capable of 
handling high-level information and has good modularity 
at the same time (Fig. 1). 
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Fig. 1 Distributed cooperative architecture. 

The basic goal of the vision calculation can be 
considered as determining a set of parameter values about 
the object. In general, these parameters are not directly 
measurable, but intermediate data or feature values which 
are hnction of the object parameters are measurable. 
However, it is usually an ill-posed problem to determine 
the object parameters from these intermediate data. Then, 
the vision problem is formulated as non-linear 
optimization problem. That is, defining square error 



A - 
estimate of object parameter d = (d l , .  . .,dm)' is obtained 

by minimizing I,, where d = (d,,  . . . ,dm)' is the actual 

object parameter, and GI (j=l ... n) is the fbnction which 

gives the , j  th intermediate data from the object 
parameters. 

The proposed architecture is designed to solve this 
optimization problem by using a set of primitive vision 
modules I'j (j=l ... n). That is, if a set of estimation 

fbnction El (gl , il ) exists and they give -dl2 l dgl or 

corresponding value, the optimal estimate of the object 
parameters are expected to be obtained by parallel 
iterative calculation: 

Then, we design the primitive vision module Pj to execute 
the calculation for the j th parameter (Fig. 2). Since 
calculation of Pj is independent from other calculation 

except for shared referring of the object parameter d , we 
can design the internal procedure of P, independently 
from other modules, and also the consistency between the 
vision modules which makes the system capable to 
produce a high-level information is maintained by sharing 
the same set of object parameters. 
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Fig.2 Recursive parameter estimation in a vision module. 

3. Practical Implementations and Experiments 
In order to verify the proposed method, we actually 

implemented three types of vision systems, and conducted 
experiments using them. 

3.1 Binocular Object Tracking System 
In order to track an object in three-dimensional space, 

we generally need an information fbsion process between 
two images taken from different view points. However, 
by using the proposed method, a three-dimensional 
tracking system can be built simply by combining a pair of 
two-dimensional image-fitting modules (Fig. 3). 
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Fig. 3 Binocular object tracking system. 

For this implementation, we define position (x, y, z) 
and orientation @, q, r) as the object parameters, and 
prepare a pair of two-dimensional image-fitting modules. 
We use two edge-patterns of object images taken from 
different view points as the intermediate datagl, g2 . In 

order to build the estimation fbnction, we introduced the 
pattern kinetics matching method [6 ] .  This method uses 
imaginary two-dimensional gravitation to fit the 
predictive edge pattern onto the detected edge pattern. 
Using the force vector F of this gravitation, the estimation 
fbnction for the object position is given by 

where .sipt(x) replaces each component of the vector x 
with an infinitesimal value with the same sign as the 
original value, R, is coordinate transformation matrix 
from the view point coordinate to the world coordinate. F 
is given by 

where tr, is the two-dimensional potential field generated 
from the detected edge-pattern g. 

In the same way, the estimation fbnction for the object 
orientation is given by 

using moment vector N caused by the imaginary 
gravitation. N is given by 

Using these estimation functions, the calculation 
procedure of the j th vision module is defined as the 
following: 

where operator * produces a composed orientation 
vector of the two orientation vectors. Schematic 
illustration of this procedure is shown in Fig. 4. 



Each fitting module is an independent vision system 
with a single-eyed camera, and estimates one two- 
dimensional projection of the full three-dimensional 
position and orientation. However, these components are 
fused to generate three-dimensional data in the 
simultaneous estimation process that takes place as the 
two single-eyed vision modules run in parallel. 

Figure 5 shows the results of a three-dimensional 
object tracking test. In this experiment, the target object 
moved around continuously in three-dimensional space, 
and was tracked by two cameras. 
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Fig. 4 Two-dimensional pattern fitting module. 
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Fig. 5 Tracking result of three dimensional object motion. 

3.2 Single-eyed Object Tracking System with 
Constraint 

If the target object's motion is constrained to a plane, 
its three-dimensional position and orientation can be 
determined using single camera and the planar-motion 
constraint. In this implementation, we replaced one of the 
image fitting modules of the binocular object tracking 
system described above with a constraint module, as 
shown in Fig. 6. The calculation procedure of the 
constraint module is given by the following formula; 

p . $+I)  = d(1) 
c .  par Pm-n.(d:;-c0)n 

dz:) =I 1 d;; 1 1  n 

where the plane is defined by norm vector n and a point co 
on that plane, and it is assumed that the object orientation 
is constrained so that the orientation vector do,, has the 
same direction as n. 

We applied this single-eyed tracking system to a 
mobile robot navigation system. In this case, given the 
location of a "landmark" object, its measured position and 
orientation relative to the camera are translated to 
produce the robot location, and are thereby used for 
navigation. Fig. 7 shows the results of a navigation 
experiment, in which a waving motion trajectory can be 
seen. (This trajectory is generated when the four legged 
robot moves its legs.) 
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Fig. 6 Single-eyed object tracking system with planar motion 
constraint. 
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Fig. 7 Mobile robot navigation result 

3.3 Object Recognition System 
In tracking systems, the object shape is assumed to be 

given. However, shapes can also be estimated by 
simultaneous calculation. In this implementation, we 
added a shape parameter dsh and a shape recognition 
module to the single-eyed tracking system of section 3.2 
(Fig. 8). The calculation procedure of this module is 
formulated as the following; 

where ESh is a search hnction which compares the object 
image g, with a set of given shape models using the 



temporal estimate of the position d,, and orientation 

do, , and determines the best matching shape. 
The object recognition algorithm usually becomes a 

multi-searching program[7][8]. That is, the program has 
to be designed to find the best matching shape and the 
best fit position and orientation of the shape at the same 
time. However, the shape recognition module shown 
above is a simple pattern matching algorithm. The object 
shape, position, and orientation are determined 
simultaneously by running this module and the image 
fitting modules in parallel. 

In the system implemented, an approximate object 
position is given in the initial values of the object 
parameters, and the system estimates the object shape, its 
exact position and orientation. Figure 9 shows the result 
of this object recognition experiment. In this figure, the 
recognized objects are indicated by the wire frames 
superimposed on them. 
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Fig. 8 Object recognition system. 

Fig. 9 Object recognition results. 

4. Concluding Remarks 
In this paper, a new method for designing modularized 

vision systems using a distributed cooperative 
architectures was introduced. Using this architecture, 
three types of vision system were actually implemented 
and tested. The results experimentally verified that vision 
systems designed using the proposed method work 
successfilly. 

Although many practical vision systems have been 
developed, there has been no way to reuse the resources 
developed in these systems, because each systems has 
been designed in a way specific to the individual 
application. By using our proposed method, one can 

design a vision system as a combination of reusable 
modules. As a result, we can extend system capability 
progressively by simply adding new modules. 

However, this method requires that an appropriate 
estimation fimction should exist for every vision modules, 
and it is currently not clear that the estimation finction 
can be built for any vision problem. In addition, we should 
consider the problem of the local minimum in the 
optimization process. These will be the future works. 

Acknowledgments 
This study was performed through the support 

provided by the Special Coordination Funds of the 
Science and Technology Agency of the Japanese 
Government. 

References 
[I] T. Hamada, K. Kamejima, and I. Takeuchi, 

"Dynamic Work Space Model Matching for 
Interactive Robot Operation," Proc. IEEfi: Int. 
Workshop on Indtrstrial Application o f  Machine 
Intelligence and Vision (MlL"89), Apr. 1989, pp. 
82-87. 

[2] T. Hamada, K. Kamejima, and I. Takeuchi, "Image 
Based Operation for Human-Robot Interaction," 
IEEE Control Systems Magazine, Vol. 10 No. 6, Oct. 
1990, pp. 24-25. 

[3] T. C. Henderson and E. Shilcrat, "Logical Sensor 
System," Journal of Robotic Systems, Vol. 1 No.2, 
1984, pp. 169- 193. 
R. A. Brooks, "A Robust Layered Control System 
for a Mobile Robot," IEEE Jotrrnal o f  Robotics and 
Atrtomation, Vol. RA-2 No. 1, Mar. 1986, pp. 14-23. 
D.Marr: Vision: A Computational Investigation into 
the Htrman Representation and Processing of VintaI 
Information. W. H.Freeman & Co, San Francisco, 
1982. 
K. Kamejima, Y. C. Ogawa, and Y. Nakano, "A Fast 
Algorithm for Approximating 2D Diffusion Equation 
with Application to Pattern Detection in Random 
Image Fields," Proc. IMACSilFAC Int. Symp, on 
~ o d e l i n ~  and Simulation qf Distrihtrted Parameter 
systems,-Oct. 1987, pp. 149-156. 
K. Ikeuchi, "Precompiling a geometrical model into 
an interpretation tree for object recognition in bin- 
picking tasks," Proc. Image l Jnderstanding 
Workshop, DARPA Information Science and 
Technoloa Office, 1987, pp.32 1-339. 
W. E. L. Grimson and T. Lozano-Perez, "Model- 
based recognition and localization from sparse range 
or tactile data," In/. J. Robotics Res., 3 ,  3, 1984, 
pp.3-35. 




