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ABSTRACT 
Lace is liable to stretch as it is passed through the feed 

mechanism, in which a vision system is engaged to detect the 
changes of the motif and find the cutting path (river) across 
the lace pattern. The vision system has to work with many 
different lace patterns, sizes and tolerate misalignment, 
stretch and other distortions. A Fuuy Reasoning Rule-based 
technique is employed in order to overcome the problems of 
flexibility. Several experiments have been canied out using 
lace patterns of varying complexity. All cutting paths across 
the patterns were successfully found. Experimental results 
indicate that this method can correctly detect the river path in 
different lace patterns. 

I. INTRODUCTION 

Handling lace in terms of cutting it along the designed 
paths is usually carried out manually. Skilled operators use 
high speed rotating blades or hot wire to cut the lace along 
the designated path. In order to satisfy industrial 
requirements two main conditions must be satisfied [4]. 
Firstly, to achieve a sufficient degree of automation the river 
must be found without prior knowledge of the lace pattern. 
Secondly, the process of river location must be carried out in 
real-time. To achieve this, the extracted knowledge can be 
used to speed up the search for the river in subsequent 
frames. The resolution required for image analysis is 
considerably lower than that provided by general purpose 
Charge Coupled Device camera (Figure 1). A bi-level image 
merely consisting of bright and dark areas would suffice 
(Figure 2) [4]. 

(marked by circles in Figure 2). Allowance must be made 
for small breaks in continuity of the river due to these cross 
threads. 

Lace comprises a fine and intricate pattern, with various 
densities of knit and holes. On most designs the mirrored 
pattern repeats many times, but in practice the repeats are 
never absolutely identical. Furthermore, lace is flexible, 
extensible and easily distorts, effectively changing the 
pattern. Norton-Wayne [ l ]  experienced this problem and 
states this characteristic of lace making it impossible to cut in 
a consistent position. Russell [3] et al. approached this 
problem by trying to locate a reference feature in the lace 
motif so they can keep track of the change in the pattern due 
to stretch. Moreover, the vision system has to work with 
many different lace patterns and sizes and tolerate 
misalignment, stretch and other distortions [4]. To overcome 
the flexibility problem, we employ an inexact decision 
making theory - fuzzy rule-based inference technique. 

In classical normative decision theory the components of 
the basic model of decision making under certainty are taken 
to be crisp sets or functions. By crisp we mean dichotomous 
- that is, of the yes-or-no type rather than of the more-or-less 
type" 181. The set of actions is as precisely defined as the set 
of possible states and the utility function is also assumed to 
be precise. In descriptive decision theory this precision is no 
longer assumed; but ambiguity and vagueness are very often 
modeled verbally, which usually does not permit the use of 
powerful mathematical methods for purposes of analysis and 
computation. The presented approach draws on this 
characteristic to cope with the flexibility problems described 

In white or near white lace, after the thresholding above. 

operation, a river shows up as a dark area (pixel group) 
within the edges that crosses from one side of the imane to 11. PATTERN RECOGNITION - 
other in a nearly unbroken sequence (Figure 2). There are 

The scheme for applying fuzzy inference techniques to thick white threads that cross the river at intervals that are 
find the first river across the lace pattern with no previous indistinguishable from the material surrounding the river 
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Figure I :  Lace image received from the CCD camera Figure 2: Bi-level lace bitmap image 
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Figure 3: Corresponding positions for black 
pixel group A and B 

knowledge can be broken down into the following tasks: 

Defining system input and output membership 
functions; 
Fuzzification process; 
Inference and composition; 
Defuzzification process; 
Verification. 

The system reads two input variables (position and density) 
after each black pixel group has been processed. The 
fuzzification process then assigns a value to represerd an 
input's degree of membership in one or more fuzzy sets. 
During inference and composition process, strengths are 
computed based on antecedent values and then assigned to 
the rules' fuzzy output. Finally, the defuzzification process 
employs compromising techniques to calculate the average 
weight for system output. These steps are described in detail 
as follows. 

2.1 Defining system input and output membership 
functions 

The degree of membership is decided from overlapping 
sets of a membership function, which is defined normally 
based on intuition or experience. The pre-defined 
membership functions cover the entire range of values for 
system input and output, and will define a degree of truth for 
every point in the universe of discourse. The shapes and 
number of fuzzy-set membership functions we chose depend 
on parameters such as the required exactitude, steadiness and 
responsiveness of the system. Different shapes such as 
triangles and trapezoids are often employed to define fuzzy- 
set membership functions [7] [S]. 

The objective here is to find the river along a lace pattern, 
by using linguistic variables to represent the common feature 
of the river shape in various lace patterns. These common 
features may be described as: 

i) that the position of the river is around the centre of a 
lace pattern; 

ii) the river pixel group density is not large. 

From these linguistic descriptions, two system inputs, group 
position and group density, can be defined. By monitoring 

Group Density = ' -' 

Figure 4: A example for calculating the group 
densities for group A and B 

the position and density of the black pixel groups (Figure 2) 
across a lace pattern, a fuzzy decision making system can 
determine whether the pixel group is a possible segment of 
the river. Figure 3 and Figure 4 illustrate the two system 
inputs corresponding to an example lace pattern together 
with two candidate groups A and B. 

Two initial experiments were carried out to define the 
system input and output membership functions. Frequency 
histograms were used on the sample data to define input 
membership functions [2][5]. From these experimental 
results we can obtain a set of data from the River group part 
to define the membership functions. The triangular 
membership function is most common and has proved to be a 
good compromise between effectiveness and efficiency. 
Overlapping between fuzzy-set boundaries is desirable and 
the key to smooth operation of the system. To simplify the 
procedure of defining fuzzy membership functions, an 
overlap of 50 percent between adjacent fuzzy sets is used in 
this experiment. Besides, each fuzzy set is chosen according 
to the central value and the slope on either side (Figure 5). 

2.2 Fuzzification process 

Fuzzification is the procedure of calculating an input 
value to represent a degree of membership in one or more 
fuzzy sets. This process uses two basic steps which are 
repeated for each system input. First, a crisp input has to be 
read and scaled to a value between 0 and 100. Second, the 
input must be translated to a degree of membership function. 
Figure 5 shows two system inputs, position and density. 

Figure 5: System input and output membershipfunctions 



Figure 6: System rule base 

Each value of system input has a degree of membership in 
each of these sets. Once the degrees of memberships are 
assigned, the values are used to evaluate the rules. 

2.3 Inference and composition 

Fuzzified inputs are processed through a pre-defined set 
of rules using min-max evaluation to form fuzzified outputs. 
The author developed a set of rules that have the form of 

IF [antecedent-I] AND [antecedent-21 
THEN [consequence] 

which are listed in Figure 6 .  The antecedents of rules 
correspond directly to degrees of membership calculated 
during the fuzzification process. Each antecedent has a 
degree of truth assigned to it as a result of fuzzification. 

In inference and composition processes, strengths are 
enumerated based on antecedent values and then assigned to 
the rules' output strengths. Figure 7 illustrates the actual 
fuzzy outputs calculated during rule evaluation process for 
pixel group A. The strength of a rule is assigned the value of 
the weakest (minimum) antecedent. As more than one rule 
applies to the same specific action. the strongest (maximum) 
value of rules is used : 

i )  from Rule 4: 
N, M. rule strength 

= min (antecedentl, antecedent-2) 
= min (68.35) = 2 

ii) Rule 5: 
N.L."le = min (68.65) = 65, 
from Rule 10 also 

Rulel: IFposition is 68 AND density is 0 THEN possibility is N.M. 
RuleZ: IF position is 68 AND denslty is 0 THEN possibility is P.S. 
Rule3: IF position is 68 AND dcnstty is 0 THEN possibility . . .  is P.S. 
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Rule6. IF posntion 1s 30 AND dens~ty is 0 THEN posslb!l~ty 3s P.S. 
Rule7: IF position is 30 AND den\lty is  0 THEN posstbtltty is P.M. 
Rule8: IF position is 30 AND density is 0 THEN poss~bslity is P.L. 

AND 
. . 

ND d e w  15 65 THENwsslbllltvlsN.L. . . . . 

Rulel I: IFpostt~on is 0 AND denrlty )SO THEN p o ~ s ~ h ~ l ~ l y  is P.S. 
Rulr N: IFporirion is A AND CnstN is B THENporrthlliN is C...... 

Figure 7: Inference and composition 
for pixel group A 

~ , ~ , m l e  strength2 

= min (30.65) = 30 
then the maximum rule strength on fuzzy set N.L. is 
N,Lmle strength 

= max (65,30) = a 
iii) Rule 9: 

Med, rule strength 

= min (30.35) = JQ 

2.4 Defuzzification process 

Defuzzification process is to convert its fuzzy outputs 
into a signal raw or crisp output. There are many 
defuzzification methods. In these experiments, we chose the 
"centre-of-gravity method" which is a common and accurate 
defuzzification technique for resolving both the vagueness 
and conflict [6 ] [7 ] .  Figure 8 illustrates defuzzification of the 
output using the centre of gravity method. The weighted 
average is calculated as follows: 

Weighted average = x (shaded area x centroid point) 
x(shaded area) 

By relying on the use of fuzzy inference technique, each 
black pixel group is calculated and assigned an average 
weight (possibility). For instance, in Figure 4, the output 
value for group A is 39.37 (16.14 %) (see Figure 8), also 
group B is 134.64 (95.53 %). Since the average weight of 
group A is only 16.14% (less than 50%). the pixel group only 
has a 16 percent possibility of being a segment of the river. 
Therefore group A is not a part of the river. 

2.5 Verification 

Once all the black pixel groups have been assigned a 
possibility value (average weight), pixel groups whose 
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Figure 8: Defuuijcation process for pixel group A 

Figure 9: Each possible river segments 
whose weights are bigger than 80 (50%) 



Figure 10 : An example for calculating 
the distance between pixel groups 

possibility values are less than 80 (50%) are abandoned 
(Figure 9). The verification process can then be broken 
down into the following tasks: 

i )  Calculate the distance between two adjacent groups; 
ii) If the distance is shorter than a specified value (set to six 

pixels long in these experiments) a network is built to record 
this path; 

iii) Continuously trace the distances between pixel groups while 
recording all the correct paths until a new pixel group reaches 
the border of the image (right hand edge of the frame); 

iv) Calculate the total possibility values and divide by the number 
of the group in this path (average possibility); 

v) If the average possibility is bigger than a specified value, (1 10 
or 75% was used in the experiments) then the correct river has 
been found; if the average possibility is less than this value. 
repeat step (iii) to (v) until the correct river is located. 

Figure 10 illustrates the computation of the distance 
between two adjacent pixel groups. By calculating the 
distances and tracing the average possibilities in all these 
segments, the river location, highlighted in Figure 11, can be 
pin-pointed. 

111. EXPERIMENTAL RESULTS 

A number of experiments were carried out to evaluate 
the effectiveness of this method. Various kinds of lace 
patterns were employed for detecting the river location. All 
cutting paths across the patterns were successfully found. 
The time taken to isolate the river and produce cutting path 
depends on complexity of the pattern. Time taken for most 
kinds of motif is typically about 0.3 second using an Intel 
80486 processor running at 66 MHz. However, in the case 
of a very few intricate lace patterns (e.g. Figure I), up to 1.5 
seconds is required. Once the river path on the first frame is 
found, this knowledge can be utilised to speed up the 
detection for the river in subsequent frames to meet the real- 
time requirements of the system. Some sample laces 

Figure 11: Interconnection between each possible 
river segments 

together with the resulting river path are shown in Figure 12 
and Figure 13. 

IV. CONCLUSION 

We have described attempts to develop a fuzzy 
reasoning rule-based system for detecting various kinds of 
lace patterns. Experimental results indicate that the 
objectives have mostly been fulfilled. The system requires 
no prior knowledge of any particular lace pattern or training. 
According to the results this method can precisely detect the 
proper river path within diversified lace patterns. Comparing 
with the previously reported methods [3][4]. it is not only 
relatively easy to design and implement the system by means 
of using the fuzzy reasoning techniques, but also more 
maintainable. 
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